Skip to main content

XLPE: Crosslinking Techniques and Recycling Process

  • Chapter
  • First Online:
Crosslinkable Polyethylene

Abstract

Although this chapter is aimed at different crosslinking methods, namely: silane, radiation, peroxide and methods have been presented briefly for a better understanding of the merits of perspectives of the more recent methods. Peroxides were used to provide primary radicals upon thermal decomposition at elevated temperatures for the generation of polymer backbone radicals. Silane crosslinking techniques like, Monosil process and Sioplas process have been discussed. Radiation crosslinking of polyethylene with X-rays, γ-rays or an electron beam produced H2 and low molecular weight hydrocarbons as by-products. The alternative concepts for the crosslinking of polyethylene, suitability of click chemistry epoxy ring-opening reactions for curing of an ethylene-glycidyl methacrylate copolymer without the emission of volatile by-products has been explored. Recycling of crosslinked polyethylene by different methods such as introducing vitrimers, ϒ radiation, ultrasonic decross-linking, supercritical decross-linking extrusion process, thermoplastic vulcanizates (TPVs) and particulate infusion has been explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ronca S (2017) Polyethylene. In: Brydson’s plastics materials. Elsevier, pp 247–278

    Google Scholar 

  2. Carlomagno GM, Meola C (2005) Cross-linked polyethylene. In: Lee S (ed) Encyclopedia of chemical processing. Taylor & Francis, pp 577–588

    Google Scholar 

  3. Morshedian J, Hosseinpour PM (2009) Polyethylene cross-linking by two-step silane method: a review. Iran Polym J 18:103–128

    Google Scholar 

  4. Anbarasan R, Babot O, Maillard B (2004) Crosslinking of high-density polyethylene in the presence of organic peroxides. J Appl Polym Sci 93:75–81. https://doi.org/10.1002/app.20390

    Google Scholar 

  5. Smedberg A, Hjertberg T, Gustafsson B (2003) Effect of molecular structure and topology on network formation in peroxide crosslinked polyethylene. Polymer 44:3395–3405. https://doi.org/10.1016/S0032-3861(03)00179-4

    Google Scholar 

  6. Smedberg A, Hjertberg T, Gustafsson B (1997) Crosslinking reactions in an unsaturated low density polyethylene. Polymer 38:4127–4138. https://doi.org/10.1016/S0032-3861(96)00994-9

    Google Scholar 

  7. Patterson R, Kandelbauer A, Müller U, Lammer H (2014) Crosslinked thermoplastics. In: Handbook of thermoset plastics. Elsevier, pp 697–737

    Google Scholar 

  8. Sahyoun J, Crepet A, Gouanve F et al (2017) Diffusion mechanism of byproducts resulting from the peroxide crosslinking of polyethylene. J Appl Polym Sci 134:1–11. https://doi.org/10.1002/app.44525

    Google Scholar 

  9. Severengiz M, Sprenger T, Seliger G (2016) Challenges and approaches for a continuous cable production. Procedia CIRP 40:18–23. https://doi.org/10.1016/j.procir.2016.01.040

    Google Scholar 

  10. Andrews T, Hampton RN, Smedberg A et al (2006) The role of degassing in XLPE power cable manufacture. IEEE Electr Insul Mag 22:5–16. https://doi.org/10.1109/MEI.2006.253416

    Google Scholar 

  11. Gul RM, Fung K, Doshi BN et al (2017) Surface cross-linked UHMWPE using peroxides. J Orthop Res 35:2551–2556. https://doi.org/10.1002/jor.23569

    Google Scholar 

  12. Al-Malaika S, Riasat S, Lewucha C (2017) Reactive antioxidants for peroxide crosslinked polyethylene. Polym Degrad Stab 145:11–24. https://doi.org/10.1016/j.polymdegradstab.2017.04.013

    Google Scholar 

  13. Kayandan S, Doshi BN, Oral E, Muratoglu OK (2018) Surface cross-linked ultra high molecular weight polyethylene by emulsified diffusion of dicumyl peroxide. J Biomed Mater Res B Appl Biomater 106:1517–1523. https://doi.org/10.1002/jbm.b.33957

    Google Scholar 

  14. Oral E, Doshi BN, Gul RM et al (2017) Peroxide cross-linked UHMWPE blended with vitamin E. J Biomed Mater Res B Appl Biomater 105:1379–1389. https://doi.org/10.1002/jbm.b.33662

    Google Scholar 

  15. Liu S-Q, Gong W-G, Zheng B-C (2014) The effect of peroxide cross-linking on the properties of low-density polyethylene. J Macromol Sci Part B 53:67–77. https://doi.org/10.1080/00222348.2013.789360

    Google Scholar 

  16. Hirabayashi H, Iguchi A, Yamada K et al (2013) Study on the structure of peroxide cross-linked polyethylene pipes with several stabilizers. Mater Sci Appl 04:497–503. https://doi.org/10.4236/msa.2013.49060

    Google Scholar 

  17. Zhang X, Yang H, Song Y, Zheng Q (2012) Influence of binary combined systems of antioxidants on the stabilization of peroxide-cured low-density polyethylene. J Appl Polym Sci 126:1885–1894. https://doi.org/10.1002/app.36754

    Google Scholar 

  18. Shah GB, Fuzail M, Anwar J (2004) Aspects of the crosslinking of polyethylene with vinyl silane. J Appl Polym Sci 92:3796–3803. https://doi.org/10.1002/app.20381

    Google Scholar 

  19. Palmlof M, Hjertberg T, Sultan B (1991) Crosslinking reactions of ethylene vinyl silane copolymers at processing temperatures. J Appl Polym Sci 42:1193–1203. https://doi.org/10.1002/app.1991.070420504

    Google Scholar 

  20. Abbas SS, Rees GJ, Patias G et al (2020) In situ cross-linking of silane functionalized reduced graphene oxide and low-density polyethylene. ACS Appl Polym Mater 2:1897–1908. https://doi.org/10.1021/acsapm.0c00115

    Google Scholar 

  21. Rocha MCG, Moraes LR da C, Cella N (2017) Thermal and mechanical properties of vinyltrimethoxysilane (VTMOS) crosslinked high molecular weight polyethylene (HMWPE). Mater Res 20:1332–1339. https://doi.org/10.1590/1980-5373-mr-2016-0552

  22. Li Q, Chen T, Sun L et al (2018) Cross-linked ultra-high-molecular-weight polyethylene prepared by silane-induced cross-linking under in situ development of water. Adv Polym Technol 37:2859–2865. https://doi.org/10.1002/adv.21957

    Google Scholar 

  23. Azizi H, Fallahi H, Ghasemi I et al (2020) Silane modification of carbon nanotubes and preparation of silane cross-linked LLDPE/MWCNT nanocomposites. J Vinyl Addit Technol 26:113–126. https://doi.org/10.1002/vnl.21724

    Google Scholar 

  24. Azizi H, Ghasemi I (2016) Thermal conductivity of silane cross-linked polyethylene composites. Bul Chem Commun 48:125–130

    Google Scholar 

  25. Chen T, Li Q, Fu Z et al (2018) The shape memory effect of crosslinked ultra-high-molecular-weight polyethylene prepared by silane-induced crosslinking method. Polym Bull 75:2181–2196. https://doi.org/10.1007/s00289-017-2144-6

    Google Scholar 

  26. Ma Z, Huang X, Jiang P, Wang G (2010) Effect of silane-grafting on water tree resistance of XLPE cable insulation. J Appl Polym Sci 115:3168–3176. https://doi.org/10.1002/app.31421

    Google Scholar 

  27. Knobel T, Minbiole PR, E-Beam Services Inc (1999) Method for irradiating organic polymers, p 75

    Google Scholar 

  28. Andersson MG, Jarvid M, Johansson A et al (2015) Dielectric strength of γ-radiation cross-linked, high vinyl-content polyethylene. Eur Polym J 64:101–107. https://doi.org/10.1016/j.eurpolymj.2014.11.042

    Google Scholar 

  29. Basfar A (2002) Flammability of radiation cross-linked low density polyethylene as an insulating material for wire and cable. Radiat Phys Chem 63:505–508. https://doi.org/10.1016/S0969-806X(01)00545-X

    Google Scholar 

  30. Baker DA, Hastings RS, Pruitt L (1999) Study of fatigue resistance of chemical and radiation crosslinked medical grade ultrahigh molecular weight polyethylene. J Biomed Mater Res 46:573–581. https://doi.org/10.1002/(SICI)1097-4636(19990915)46:4%3c573:AID-JBM16%3e3.0.CO;2-A

    Google Scholar 

  31. Shyichuk A, Tokaryk G (2005) A comparison of methods to determination of macromolecule crosslinking yield from gel fraction data. Polimery 50:219–221. https://doi.org/10.14314/polimery.2005.219

  32. Danaei M, Sheikh N, Taromi FA (2005) Radiation cross-linked polyethylene foam: preparation and properties. J Cell Plast 41:551–562. https://doi.org/10.1177/0021955X05059034

    Google Scholar 

  33. Sobieraj MC, Rimnac CM (2009) Ultra high molecular weight polyethylene: mechanics, morphology, and clinical behavior. J Mech Behav Biomed Mater 2:433–443. https://doi.org/10.1016/j.jmbbm.2008.12.006

    Google Scholar 

  34. Li S, Burstein AH (1982) Current concepts review ultra-high molecular weight polyethylene. J Bone Joint Surg 64:147–152. https://doi.org/10.2106/00004623-198264010-00023

    Google Scholar 

  35. Jahan M, King M, Haggard W et al (2001) A study of long-lived free radicals in gamma-irradiated medical grade polyethylene. Radiat Phys Chem 62:141–144. https://doi.org/10.1016/S0969-806X(01)00431-5

    Google Scholar 

  36. Thomas DE, Jahan MS, Trieu HH et al (1996) A study of free radicals in irradiated/aged UHMWPE materials. In: Proceedings of the 1996 fifteenth southern biomedical engineering conference. IEEE, pp 207–209

    Google Scholar 

  37. Oral E, Muratoglu OK (2007) Radiation cross-linking in ultra-high molecular weight polyethylene for orthopaedic applications. Nucl Instrum Methods Phys Res Sect B 265:18–22. https://doi.org/10.1016/j.nimb.2007.08.022

    Google Scholar 

  38. Oral E (2004) α-Tocopherol-doped irradiated UHMWPE for high fatigue resistance and low wear. Biomaterials 25:5515–5522. https://doi.org/10.1016/j.biomaterials.2003.12.048

    Google Scholar 

  39. Oral E, Christensen SD, Malhi AS et al (2006) Wear resistance and mechanical properties of highly cross-linked, ultrahigh-molecular weight polyethylene doped with vitamin E. J Arthroplasty 21:580–591. https://doi.org/10.1016/j.arth.2005.07.009

    Google Scholar 

  40. Laurent MP, Johnson TS, Crowninshield RD et al (2008) Characterization of a highly cross-linked ultrahigh molecular-weight polyethylene in clinical use in total hip arthroplasty. J Arthroplasty 23:751–761. https://doi.org/10.1016/j.arth.2007.06.006

    Google Scholar 

  41. Oonishi H, Ishimaru H, Kato A (1996) Effect of cross-linkage by gamma radiation in heavy doses to low wear polyethylene in total hip prostheses. J Mater Sci Mater Med 7:753–763. https://doi.org/10.1007/BF00121412

    Google Scholar 

  42. Takahashi Y, Tateiwa T, Pezzotti G et al (2016) Improved resistance to neck-liner impingement in second-generation highly crosslinked polyethylene—the role of vitamin E and Crosslinks. J Arthroplasty 31:2926–2932. https://doi.org/10.1016/j.arth.2016.05.049

    Google Scholar 

  43. Liu S, Veysey SW, Fifield LS, Bowler N (2018) Quantitative analysis of changes in antioxidant in crosslinked polyethylene (XLPE) cable insulation material exposed to heat and gamma radiation. Polym Degrad Stab 156:252–258. https://doi.org/10.1016/j.polymdegradstab.2018.09.011

    Google Scholar 

  44. Zhang H, Shang Y, Li M et al (2016) Theoretical study on the reaction mechanism in the UV radiation cross-linking process of polyethylene. RSC Adv 6:110831–110839. https://doi.org/10.1039/C6RA24433E

    Google Scholar 

  45. Martínez-Romo A, Mota RG, Bernal JJS et al (2015) Effect of ultraviolet radiation in the photo-oxidation of High Density Polyethylene and Biodegradable Polyethylene films. J Phys: Conf Ser 582:012026. https://doi.org/10.1088/1742-6596/582/1/012026

    Google Scholar 

  46. Mauri M, Peterson A, Senol A et al (2018) Byproduct-free curing of a highly insulating polyethylene copolymer blend: an alternative to peroxide crosslinking. J Mater Chem C 6:11292–11302. https://doi.org/10.1039/c8tc04494e

    Google Scholar 

  47. Mauri M, Tran N, Prieto O et al (2017) Crosslinking of an ethylene-glycidyl methacrylate copolymer with amine click chemistry. Polymer 111:27–35. https://doi.org/10.1016/j.polymer.2017.01.010

    Google Scholar 

  48. Magana S, Zerroukhi A, Jegat C, Mignard N (2010) Thermally reversible crosslinked polyethylene using Diels-Alder reaction in molten state. React Funct Polym 70:442–448. https://doi.org/10.1016/j.reactfunctpolym.2010.04.007

    Google Scholar 

  49. Torres N, Robin JJ, Boutevin B (2001) Study of compatibilization of HDPE-PET blends by adding grafted or statistical copolymers. J Appl Polym Sci 81:2377–2386. https://doi.org/10.1002/app.1678

    Google Scholar 

  50. Chiono V, Filippi S, Yordanov H et al (2003) Reactive compatibilizer precursors for LDPE/PA6 blends. III: ethylene–glycidylmethacrylate copolymer. Polymer 44:2423–2432. https://doi.org/10.1016/S0032-3861(03)00134-4

    Google Scholar 

  51. Briceño Garcia RD, Keromnes L, Goutille Y et al (2014) Structural evolution of a constrained epoxy functional polyethylene network crosslinked by a bio-based reactant. Eur Polym J 61:186–196. https://doi.org/10.1016/j.eurpolymj.2014.10.003

    Google Scholar 

  52. Wojtecki RJ, Meador MA, Rowan SJ (2011) Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat Mater 10:14–27. https://doi.org/10.1038/nmat2891

    Google Scholar 

  53. Wu J, Cai L-H, Weitz DA (2017) Tough self-healing elastomers by molecular enforced integration of covalent and reversible networks. Adv Mater 29:1702616. https://doi.org/10.1002/adma.201702616

    Google Scholar 

  54. Röttger M, Domenech T, van der Weegen R et al (2017) High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science 356:62–65. https://doi.org/10.1126/science.aah5281

    Google Scholar 

  55. Chen Q, Yu X, Pei Z et al (2017) Multi-stimuli responsive and multi-functional oligoaniline-modified vitrimers. Chem Sci 8:724–733. https://doi.org/10.1039/C6SC02855A

    Google Scholar 

  56. Cromwell OR, Chung J, Guan Z (2015) Malleable and self-healing covalent polymer networks through tunable dynamic boronic ester bonds. J Am Chem Soc 137:6492–6495. https://doi.org/10.1021/jacs.5b03551

    Google Scholar 

  57. Ji F, Liu X, Lin C et al (2019) Reprocessable and recyclable crosslinked polyethylene with triple shape memory effect. Macromol Mater Eng 304:1800528. https://doi.org/10.1002/mame.201800528

    Google Scholar 

  58. Mészáros L, Kara Y, Fekete T, Molnár K (2020) Development of self-reinforced low-density polyethylene using γ-irradiation cross-linked polyethylene fibres. Radiat Phys Chem 170:108655. https://doi.org/10.1016/j.radphyschem.2019.108655

    Google Scholar 

  59. Hong CK, Isayev AI (2002) Ultrasonic devulcanization of unfilled SBR under static and continuous conditions. Rubber Chem Technol 75:133–142. https://doi.org/10.5254/1.3547665

    Google Scholar 

  60. Huang K, Isayev AI (2014) Ultrasonic decrosslinking of crosslinked high-density polyethylene: effect of degree of crosslinking. RSC Adv 4:38877–38892. https://doi.org/10.1039/C4RA04860A

    Google Scholar 

  61. Goto T, Ashihara S, Kato M et al (2012) Use of single-screw extruder for continuous silane cross-linked polyethylene recycling process using supercritical alcohol. Ind Eng Chem Res 51:6967–6971. https://doi.org/10.1021/ie202303y

    Google Scholar 

  62. Goto T, Yamazaki T, Sugeta T et al (2005) Investigation of continuous process for recycling of silane cross-linked polyethylene by supercritical alcohol. Kagaku Kogaku Ronbunshu 31:411–416. https://doi.org/10.1252/kakoronbunshu.31.411

    Google Scholar 

  63. Lee HS, Jeong JH, Hong G et al (2013) Effect of solvents on de-cross-linking of cross-linked polyethylene under subcritical and supercritical conditions. Ind Eng Chem Res 52:6633–6638. https://doi.org/10.1021/ie4006194

    Google Scholar 

  64. Lee H-S, Jeong JH, Hong SM et al (2012) Recycling of crosslinked polypropylene and crosslinked polyethylene in supercritical methanol. Korean Chem Eng Res 50:88–92. https://doi.org/10.9713/kcer.2012.50.1.088

    Google Scholar 

  65. Goto T, Ashihara S, Yamazaki T, Watanabe K (2006) Evaluation of recycling technology of insulation of cross-linked polyethylene insulated cable using supercritical alcohol. IEEJ Trans Power Energy 126:400–406. https://doi.org/10.1541/ieejpes.126.400

    Google Scholar 

  66. Celina M, George GA (1995) Characterisation and degradation studies of peroxide and silane crosslinked polyethylene. Polym Degrad Stab 48:297–312. https://doi.org/10.1016/0141-3910(95)00053-O

    Google Scholar 

  67. Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116:2658–2667. https://doi.org/10.1002/app

    Google Scholar 

  68. Baek BK, Shin JW, Jung JY et al (2015) Continuous supercritical decrosslinking extrusion process for recycling of crosslinked polyethylene waste. J Appl Polym Sci 132. https://doi.org/10.1002/app.41442

  69. Okajima I, Katsuzaki A, Goto T et al (2010) Decomposition of silane-crosslinked polyethylene with supercritical alcohol. J Chem Eng Jpn 43:231–237. https://doi.org/10.1252/jcej.09we303

    Google Scholar 

  70. Ritums JE, Mattozzi A, Gedde UW et al (2006) Mechanical properties of high-density polyethylene and crosslinked high-density polyethylene in crude oil and its components. J Polym Sci Part B: Polym Phys 44:641–648. https://doi.org/10.1002/polb.20729

    Google Scholar 

  71. Sirisinha K, Chuaythong P (2014) Reprocessable silane-crosslinked polyethylene: property and utilization as toughness enhancer for high-density polyethylene. J Mater Sci 49:5182–5189. https://doi.org/10.1007/s10853-014-8226-z

    Google Scholar 

  72. Sirisinha K, Boonkongkaew M (2013) Improved silane grafting of high-density polyethylene in the melt by using a binary initiator and the properties of silane-crosslinked products. J Polym Res 20:120. https://doi.org/10.1007/s10965-013-0120-x

    Google Scholar 

  73. Grigoryeva OP, Fainleib AM, Tolstov AL et al (2005) Thermoplastic elastomers based on recycled high-density polyethylene, ethylene-propylene-diene monomer rubber, and ground tire rubber. J Appl Polym Sci 95:659–671. https://doi.org/10.1002/app.21177

    Google Scholar 

  74. Zhang X, Lu C, Liang M (2011) Preparation of thermoplastic vulcanizates based on waste crosslinked polyethylene and ground tire rubber through dynamic vulcanization. J Appl Polym Sci 122:2110–2120. https://doi.org/10.1002/app.34293

    Google Scholar 

  75. Wu H, Liang M, Lu C (2011) Morphological and structural development of recycled crosslinked polyethylene during solid-state mechanochemical milling. J Appl Polym Sci 122:257–264. https://doi.org/10.1002/app.33863

    Google Scholar 

  76. Qudaih R, Janajreh I, Vukusic SE (2011) Advances in sustainable manufacturing. In: Seliger G, Khraisheh MMK, Jawahir IS (eds) Recycling of cross-linked polyethylene cable waste via particulate infusion. Springer, Berlin, Heidelberg, pp 233–239

    Google Scholar 

  77. Janajreh I, Alshrah M (2013) Remolding of cross-linked polyethylene cable waste: thermal and mechanical property assessment. Int J Therm Environ Eng 5:191–198. https://doi.org/10.5383/ijtee.05.02.012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nithin Chandran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chandran, N., Sivadas, A., Anuja, E.V., Baby, D.K., Ramdas, R. (2021). XLPE: Crosslinking Techniques and Recycling Process. In: Thomas, J., Thomas, S., Ahmad, Z. (eds) Crosslinkable Polyethylene. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-0514-7_7

Download citation

Publish with us

Policies and ethics