Skip to main content

General Awareness of XLPE Manufacturers

  • Chapter
  • First Online:
Crosslinkable Polyethylene

Abstract

Crosslinked polyethylene (XLPE) has a complex value chain and is used in a variety of applications and industries. Intellectual property trends are presented and discussed in terms of evolving applications. The different kinds of crosslinking via peroxide and moisture cure technologies are presented. Technical options for compounding of polymer and additives are presented with a historical flavor. Current peroxide incorporation technologies and options are reviewed based on existing literature. Technology for making silane copolymers in the high-pressure process is reviewed. Chemistry and process technology for making grafted and crosslinkable silanes is also presented and discussed. Selected applications for XLPE are presented and the related manufacturing process is discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gustafsson B, Boström JO, Dammert R (1998) Stabilization of peroxide crosslinked polyethylene. Die Angewandte Makromolekulare Chemie 261(1):93–99

    Google Scholar 

  2. Gross LH, Bartlett TM (1989) Process for grafting diacid anhydrides. US Patent 4,857,600

    Google Scholar 

  3. Toshio T, Hideaki T (1977) Polyethylene composition. US Patent 4,010,127

    Google Scholar 

  4. Clark CF, Hill RW (1963) Polyethylene compositions. US Patent 3,108,981

    Google Scholar 

  5. Thompson M, Donoian G, Christiano J (2000) Melting mechanism of a starved-fed single-screw extruder for calcium carbonate filled polyethylene. Polym Eng Sci 40(9):2014–2026

    Google Scholar 

  6. Spalding MA, Chatterjee A (2017) Handbook of industrial polyethylene and technology: definitive guide to manufacturing, properties, processing, applications and markets set. Wiley

    Google Scholar 

  7. Campbell GA, Spalding MA (2013) Analyzing and troubleshooting single-screw extruders. Carl Hanser Verlag GmbH Co KG

    Google Scholar 

  8. Spalding MA, Hyun K (2003) Troubleshooting mixing problems in single-screw extruders. In: ANTEC-conference proceedings

    Google Scholar 

  9. Caronia PJ, Cogen JM (2003) Polyethylene crosslinkable composition. US Patent 6,656,986

    Google Scholar 

  10. Cogen JM (2002) Polyethylene crosslinkable composition. US Patent 6,455,616

    Google Scholar 

  11. Meskat W, Erdmenger R (1944) DBP 872 732 Gleichdrall-Dreifachschnecke mit Dichtprofil zum Abpressen. Priorität

    Google Scholar 

  12. Sorcinelli GJ (1997) Continuous mixing, in the mixing of rubber. Springer, pp 211–220

    Google Scholar 

  13. Canedo E, Valsamis L (1994) Selecting continuous compounding equipment based on process considerations. Int Polym Proc 9(3):225–232

    Google Scholar 

  14. White JL (1991) Twin screw extrusion: technology and principles

    Google Scholar 

  15. https://www.gem-chem.net/machinerytse.html

  16. Palmer WH, Hannon BM (1963) Internally heated die plate for polyethylene extruder. US Patent 3,114,169

    Google Scholar 

  17. Wiley VCH 9.2.3 Pelletizing, in Ullmann's polymers and plastics—products and processes, 4 volume set. Wiley

    Google Scholar 

  18. Kharazi A, Dunchus NW (1999) Process for the production of a thermosetting composition. US Patent 5,972,267

    Google Scholar 

  19. Talreja M et al (2020) Peroxide-crosslinkable compositions and processes for their manufacture. US Patent 10,577,482

    Google Scholar 

  20. Albizzati GP (2001) Process for producing an electrical cable, particularly for high voltage direct current transmission or distribution, U.P. Office, Editor. 2001, Prysmian Cavi e Sistemi Energia SRL: US

    Google Scholar 

  21. Bailey DL, Mixer RY (1957) Polymerization of vinylalkoxysilanes. US Patent 2,777,869

    Google Scholar 

  22. Ehrlich P, Mortimer G (1970) Fundamentals of the free-radical polymerization of ethylene. Fortschritte der Hochpolymeren-Forschung, pp 386–448

    Google Scholar 

  23. Patel RM et al (2008) Polyethylene: an account of scientific discovery and industrial innovations. ACS Publications

    Google Scholar 

  24. Sultan B-A, Palmlöf M (1994) Advances in crosslinking technology. Plast Rubber Compos Process Appl 21(2):65–73

    Google Scholar 

  25. Munteanu D (1997) Moisture cross-linkable silane-modified polyolefins. In Reactive modifiers for polymers. Springer, pp 196–265

    Google Scholar 

  26. Chaudhary BIEA (2019) Effect of polyethylene structure on silane grafting and properties of associated moisture-crosslinked compositions and cable constructions. In: ANTEC 2019. SPE Detroit

    Google Scholar 

  27. Moad G (1999) The synthesis of polyolefin graft copolymers by reactive extrusion. Prog Polym Sci 24(1):81–142

    Google Scholar 

  28. Russell K (2002) Free radical graft polymerization and copolymerization at higher temperatures. Prog Polym Sci 27(6):1007–1038

    Google Scholar 

  29. Suwanda D, Balks ST (1993) The reactive modification of polyethylene. I: the effect of low initiator concentrations on molecular properties. Polym Eng Sci 33(24):1585–1591

    Google Scholar 

  30. Parent JS, Parodi R, Wu W (2006) Radical mediated graft modification of polyolefins: Vinyltriethoxysilane addition dynamics and yields. Polym Eng Sci 46(12):1754–1761

    Google Scholar 

  31. Spencer M, Parent JS, Whitney RA (2003) Composition distribution in poly (ethylene-graft-vinyltrimethoxysilane). Polymer 44(7):2015–2023

    Google Scholar 

  32. Wong W, Varrall D (1994) Role of molecular structure on the silane crosslinking of polyethylene: the importance of resin molecular structure change during silane grafting. Polymer 35(25):5447–5452

    Google Scholar 

  33. Swarbrick P, Green WJ, Maillefer C (1978) Manufacture of extruded products. US Patent 4,117,195

    Google Scholar 

  34. Scott HG (1972) Cross-linking of a polyolefin with a silane, U.P. Office, Editor. Midland Silicones

    Google Scholar 

  35. Richardson PN (1974) Introduction to extrusion. Society of Plastics Engineers Brookfield Center, Conn

    Google Scholar 

  36. Levy S, Carley JF (1989) Plastics extrusion technology handbook. Industrial Press Inc.

    Google Scholar 

  37. Hopmann C, Michaeli W (2016) Extrusion dies for plastics and rubber: design and engineering computations. Carl Hanser Verlag GmbH Co KG

    Google Scholar 

  38. Kutz M 32.4.1 cross-linking technologies, 2nd edn. In: Applied plastics engineering handbook—processing, materials, and applications. Elsevier

    Google Scholar 

  39. Gedde U, Ifwarson M (1990) Molecular structure and morphology of crosslinked polyethylene in an aged hot-water pipe. Polym Eng Sci 30(4):202–210

    Google Scholar 

  40. Morshedian J, Mohammad HP (2009) Polyethylene cross-linking by two-step silane method: a review

    Google Scholar 

  41. Sultan B-Ã… et al (2011) Crosslinkable high pressure polyethylene composition, a process for the preparation thereof, a pipe and a cable prepared thereof. US Patent 8,017,710

    Google Scholar 

  42. Dodiuk H, Goodman SH 17.9.2 rotational molding, 3rd edn. In Handbook of thermoset plastics. Elsevier

    Google Scholar 

  43. Dodiuk H, Goodman SH 17.9.3 heat-shrinkable tubing, 3rd edn. In Handbook of thermoset plastics. Elsevier

    Google Scholar 

  44. Rodríguez-Pérez M (2005) Crosslinked polyolefin foams: production, structure, properties, and applications. Crosslink Mater Sci:55–56

    Google Scholar 

  45. Manley TR, Qayyum MM (1971) The effects of varying peroxide concentration in crosslinked linear polyethylene. Polymer:176–188

    Google Scholar 

  46. Sengupta S et al (2008) Evolution of crosslinks during moisture cure of ethylene-vinylalkoxysilane copolymers in power cables. Int Wire Cable Symp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurav S. Sengupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sengupta, S.S., Calon, P. (2021). General Awareness of XLPE Manufacturers. In: Thomas, J., Thomas, S., Ahmad, Z. (eds) Crosslinkable Polyethylene. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-0514-7_4

Download citation

Publish with us

Policies and ethics