Skip to main content

Failure Mechanisms in XLPE Cables

  • Chapter
  • First Online:
Crosslinkable Polyethylene

Abstract

During the operation of the cables, their insulation is subjected to simultaneous or consecutive electrical, thermal, mechanical and environmental stresses. These stresses contribute to the initiation and development of some processes of XLPE degradation; processes that lead, in time, to the insulation breakdown and, therefore, to the removal and failure of the cables. This chapter presents the mechanisms of XLPE insulations degradation generated by the electric field, namely the electric discharges, the electric and water trees. Initially, the distribution of the electric field inside the insulations (i.e., in the absence and in the presence of the space charge) is analyzed and shown to be non-uniform. The existence of macroscopic defects (e.g., protuberances, non-uniformities of the semiconductor layers, cavities, clusters of impurities, etc.) determines large local values of the electric field, which can exceed the maximum permissible limits imposed on each type of cable (starting from which the mechanisms of insulations degradation are initiated). It is outlined then the phenomena of aging, degradation and failure of the XLPE insulation due to the electric field and its values are presented for each characteristic phenomenon and degradation mechanism. Further, the physical processes of initiation and development of partial discharges and electric and water trees, their characteristic parameters, the factors that contribute to the intensification of these processes, as well as the methods of increasing the initiation times and reducing the development speed of the mechanisms are analyzed in detail. The resistance of the XLPE insulations to each of the three degradation mechanisms is studied in detail, and some results from literature regarding methods of increasing their values are presented, respectively, the improvement of the XLPE characteristics and of the insulations manufacturing technologies. In addition, the mechanisms of space charge accumulation and its influence on the degradation mechanisms of XLPE insulations are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartnikas R (2000) Characteristics of cable materials. In: Bartnikas R (ed) Power and communication cables. Theory and applications. IEEE Press, New York, pp 134–137

    Google Scholar 

  2. Notingher PV (2004) Materials for electrotechnics. In: Structure. Properties, vol 1. Politehnica Press, Bucharest, Romania, pp 350–403

    Google Scholar 

  3. Orton H (2013) History of underground power cables. IEEE Electr Insul Mag 29(4):52–57

    Article  Google Scholar 

  4. Ohki Y (2013) Development of XLPE-insulated cable for high-voltage DC submarine transmission line (2). IEEE Electr Insul Mag 29(5):85–87

    Article  Google Scholar 

  5. Stancu C, Notingher PV (2012) Electrical stresses of medium voltage cable insulations. Ed. Printech, Bucharest, Romania

    Google Scholar 

  6. Stancu C (2018) Méthodes d’estimation de l’état de vieillissement des câbles d’énergie. Editions universitaires européennes, Schaltungsdienst Lange o.H.G, Berlin

    Google Scholar 

  7. Stancu C, Notingher PV, Notingher P (2013) Computation of the electric field in aged underground medium voltage cable insulation. IEEE Trans Dielectrics Electr Insul 20(5):1530–1539

    Article  Google Scholar 

  8. Stancu C, Notingher PV, Ciuprina F, NotingherJr P, Castellon J, Agnel S, Toureille A (2009) Computation of the electric field in cable insulation in the presence of water trees and space charge. IEEE Trans Ind Appl 45(1):30–49

    Article  Google Scholar 

  9. Taranu LV, Notingher PV, Stancu CR (2019) Accumulation and effects of space charge in direct current cable joints, Part I: model and methods for space charge density determination. Rev Roum Sci Tech Electr et Energy 64(2):1–6

    Google Scholar 

  10. Fothergill JC (2007) Aging, space charge and nanodielectrics: ten things we don’t know about dielectrics. In: Proceedings of the IEEE International Conference on Solid Dielectrics, Winchester, UK, pp 1–10

    Google Scholar 

  11. Dissado LA, Fothergill JC (1992) Electrical degradation and breakdown in polymers. Peter Peregrinus Ltd.

    Google Scholar 

  12. O’Dwyer JJ (1973) Theory of electrical conduction and breakdown in solid dielectrics. Oxford University Press, Oxford, UK

    Google Scholar 

  13. Notingher PV, Ioan D (1978) A numerical method for computing the electrical stress in dielectrics. Revue Roum Sci Tehn Electr Et Energy 23(3):363–372

    Google Scholar 

  14. Notingher PV (1979) On the breakdown mechanism of inhomogenous solid dielectrics. Revue Roum Sci Tehn Electr Et Energy 24(4):651–663

    Google Scholar 

  15. Notingher PV (1979) Méthodes de calcul de la durée de rupture dans le système pointe-plan. Revue Roum Sci Tehn Electr Et Energy 31(1):59–68

    Google Scholar 

  16. Notingher PV (1979) Le calcul des durées de rupture des diélectriques solides. L’influence des gas de l’intérieur des cavités. Revue Roum Sci Tehn Electr Et Energy 31(2):133–144

    Google Scholar 

  17. Densley J (2001) Aging mechanisms and diagnostics for power cables - an overview. IEEE Electr Insul Mag 17(1):14–22

    Article  Google Scholar 

  18. Ahmed Z, Hussain GA, Lehtonen M, Varacka L, Kudelcik J (2016) Analysis of partial discharge signals in medium voltage XLPE cables. In: 17th International scientific conference on electric power engineering (EPE), Prague, pp 1–6

    Google Scholar 

  19. Iddrissu I (2016) Study of electrical strength and lifetimes of polymeric insulation for DC applications. Ph.D. Thesis, University of Manchester, Manchester, UK

    Google Scholar 

  20. Dissado LA, Mazzanti G, Montanari GC (1997) The role of trapped space charges in the electrical aging of insulating materials. IEEE Trans Dielectr Electr Insul 4(5):496–506

    Article  CAS  Google Scholar 

  21. Crine JP, Parpal JL, Lessard G (1989) A model of aging of dielectric extruded cables. In: Proceedings of. 3rd ICSD, pp 347–351

    Google Scholar 

  22. Rowe SW (2007) Electrical aging of composites: an industrial perspective. In: 2007 International conference on solid dielectrics, Winchester, UK, pp 401–406

    Google Scholar 

  23. Crine J-P, Vijh AK (1985) A molecular approach to the physicochemical factors in the electric breakdown of polymers. Appl Phys Comm 5(3):139–163

    CAS  Google Scholar 

  24. Dissado LA, Mazzanti G, Montanari GC (1995) The incorporation of space charge degradation in the life model for electrical insulating materials. IEEE Trans DEI 2(6):1147–1158

    Article  CAS  Google Scholar 

  25. Dissado LA, Mazzanti G, Montanari GC (1997) Discussion of space-charge life model features in dc and ac electrical aging of polymeric materials. In: Annual Report CEIDP, pp 36–40

    Google Scholar 

  26. Mazzanti G, Montanari GC, Dissado LA (1999) A space-charge life model for ac electrical aging of polymers. IEEE Trans Dielectrics Electr Insul 6(6):864–875

    Google Scholar 

  27. Dissado LA, Mazzanti G, Montanari GC (2001) Elemental strain and trapped space charge in thermoelectrical aging of insulating materials. Part 1: elemental strain under thermo-electrical-mechanical stress. IEEE Trans DEI 8(6):959–965

    Article  CAS  Google Scholar 

  28. Mazzanti G, Montanari GC, Dissado LA (2001) Elemental strain and trapped space charge in thermoelectrical aging of insulating materials. Life modelling. IEEE Trans DEI 8(6):966–971

    Article  CAS  Google Scholar 

  29. Lewis TJ, Llewellyn JP, van der Sluijs MJ, Freestone J, Hampton RN (1996) A new model for electrical aging and breakdown in dielectrics. In: IEE DMMA, Conference Publication No. 430, pp 220–224

    Google Scholar 

  30. Lewis TJ (2001) Aging—a perspective. IEEE Electr Insul Mag 17:6–16

    Article  Google Scholar 

  31. Lewis TJ, Llewellyn JP, van der Sluijs MJ, Freestone J, Hampton RN (1995) Electromechanical effects in XLPE cable models. In: Proceedings of 5th ICSD (IEEE Pub. 95CH3476–9), pp 269–273

    Google Scholar 

  32. Griffiths CL, Freestone J, Hampton RN (1998) Thermoelectric aging of cable grade XLPE. In: Proceedings of IEEE ISEI, pp 578–582

    Google Scholar 

  33. C. L. Griffiths, S. Betteridge, J. P. Llewellyn, T. J. Lewis. The Importance of Mechanical Properties for Increasing the Electrical Endurance of Polymeric Insulation. IEE DMMA, Conf. Pub. No 473, 2000, p. 408–411

    Google Scholar 

  34. Jones JP, Llewellyn JP, Lewis TJ (2005) The contribution of field-induced morphological change to the electrical aging and breakdown of polyethylene. IEEE Trans DEI 12(5):951–966

    Article  CAS  Google Scholar 

  35. Dang C, Parpal J-L, Crine J-P (1996) Electrical aging of extruded dielectric cables review of existing theories and data. IEEE Trans DEI 3(2):237–247

    Article  CAS  Google Scholar 

  36. Parpal JL, Crine JP, Dang C (1997) Electrical aging of extruded dielectric cables—a physical model. IEEE Trans DEI 4(2):197–209

    Article  CAS  Google Scholar 

  37. Crine JP (1997) A molecular model to evaluate the impact of aging on space charges in polymer dielectrics. IEEE Trans DEI 4(5):487–495

    Article  CAS  Google Scholar 

  38. Mazzanti G, Montanari GC (2005) Electrical aging and life models: the role of space charge. IEEE Trans DEI 12(5):876–890

    Article  Google Scholar 

  39. Harlin A, Danikas MG, Hyvönen P (2005) Polyolefin insulation degradation in electrical field below critical inception voltages. J Electr Eng 56(5–6):135–140

    CAS  Google Scholar 

  40. Hyvönen P (2008) Prediction of insulation degradation of distribution power cables based on chemical analysis and electrical measurements. Ph.D. Thesis, Helsinki University of Technology (TKK), Espoo, Finland

    Google Scholar 

  41. Oyegoke B, Hyvönen P, Aro M, Gao N (2003) Application of dielectric response measurement on power cable systems. IEEE Trans DEI 10(5):862–873

    Article  Google Scholar 

  42. ***IEC 60270, High-voltage test techniques—Partial discharge measurements, Geneva, 1 November 2015

    Google Scholar 

  43. Gamez-Garcia M, Bartnikas R, Wertheimer MR (1987) Synthesis reactions involving XLPE subjected to partial discharges. IEEE DEI EI-22(2):199–205

    Google Scholar 

  44. Wolter KD, Tanaka J, Johnson JF (1982) A study of the gaseous degradation products of corona-exposed polyethylene. IEEE Trans Electr Insul EI-17(3):248–252

    Google Scholar 

  45. Morshuis PHF (2005) Degradation of solid dielectrics due to internal partial discharge: some thoughts on progress made and where to go now. IEEE Trans DEI 12(6):1275–1275

    Google Scholar 

  46. McMahon EJ (1968) The chemistry of corona degradation of organic insulating materials in high voltage fields under mechanical strain. IEEE Trans Electr Insul EI-3(1):3–10

    Google Scholar 

  47. Foulon Belkacemi N, Goldman M, Goldman A, Amouroux J (1995) Transformation of nodules into crystals on polymers submitted to corona discharges with streamers. IEE Proc Sci Measur Techn 142(6):477–481

    Article  CAS  Google Scholar 

  48. Morshuis P (1995) Assessment of dielectric degradation by ultrawide-band PD detection. IEEE Trans DEI 2(5):744–760

    Article  Google Scholar 

  49. Gulski E, Kreuger FH (1992) Computer-aided recognition of discharge sources. IEEE Trans Electr Insul 27(1):82–92

    Article  Google Scholar 

  50. James J, Kulkarni SV, Parekh BR (2009) Partial discharge in high voltage equipment-HV cable. In: Proceedings of IEEE 9th international conference on the properties and applications of dielectric materials (ICPADM), Harbin, China, pp 445–448

    Google Scholar 

  51. Kreuger FH (1989) Partial discharge detection in high-voltage equipment. Butterworths, London

    Google Scholar 

  52. Montanari GC, Cavallini A, Puletti F (2006) A new approach to partial discharge testing of HV cable systems. IEEE Electr Insul Mag 22(1):14–23

    Article  Google Scholar 

  53. Pleşa I, Noţingher PV, Stancu C, Wiesbrock F, Schlögl S (2019) Polyethylene nanocomposites for power cable insulations. Polymers 11(1):24

    Article  CAS  Google Scholar 

  54. Notingher PV (2002) Insulation systems. PRINTECH Publishing House, Bucharest

    Google Scholar 

  55. Bahder G, Garrity T, Sosnowski M, Eaton R, Katz C (1982) Physical model of electric aging and breakdown of extruded polymeric insulated power cables. IEEE Trans PAS PAS-101(6):1379–1390

    Google Scholar 

  56. Temmen K (2000) Evaluation of surface changes in flat cavities due to aging by means of phase-angle resolved partial discharge measurement. J Phys D Appl Phys 33:603–608

    Article  CAS  Google Scholar 

  57. Yoda B, Muraki K (1973) Development of EHV cross-linked polyethylene insulated power cables. IEEE Trans PAS PAS-92(2):506–513

    Google Scholar 

  58. Muccigrosso J, Phillips PJ (1978) The morphology of cross-linked polyethylene insulation. IEEE Trans Electr Insul EI-13(3):172–178

    Google Scholar 

  59. Nitzer H (1966) Teilentladungsvorgange in dielektrischen Hohlraumen. Technische Hochschule Illmenau, XI, Internationale Wissenschaftliche Kolloquium, pp 25–31

    Google Scholar 

  60. Pedersen A (1968) Partielle Udladninger i kunstige Hulrum. Vasteras, Nord-PD 68

    Google Scholar 

  61. Kreuger FH (1964) Discharge detection in high voltage equipment. Heywood, London

    Google Scholar 

  62. Mason JH (1951) The deterioration and breakdown of dielectrics resulting from internal discharges. Proc Inst Electr Eng Part I General 98(109): 44–59

    Google Scholar 

  63. Dakin TW, Berg D (1959) Luminous spots on electrodes in insulating oil gaps. Nature 184(120):120

    Article  CAS  Google Scholar 

  64. Notingher PV, Plopeanu M (2009) Fast development of electrical trees. Part I—a: trees inception. EEA Electr Eng Electron Autom 57(4):11–19

    Google Scholar 

  65. Tanaka T, Ohki Y, Ochi M, Harada M, Imai T (2008) Enhanced partial discharge resistance of epoxy/claynanocomposite prepared by newly developed organic modification and solubilization methods. IEEE Trans DEI 15(1):81–89

    Article  CAS  Google Scholar 

  66. Arief YZ, Ahmad H, Hikita M (2008) Partial discharge characteristics of XLPE cable joint and interfacial phenomena with artificial defects. In: Proceedings of IEEE 2nd international power and energy conference (PECON), Johor Bahru, Malaysia, pp 977–982

    Google Scholar 

  67. Lyle R, Kirkland JW (1981) An accelerated life test for evaluating power cable insulation. IEEE Trans Power Appar Syst PAS-100(8):3764–3774

    Google Scholar 

  68. Okamoto H, Kanazashi M, Tanaka T (1977) Deterioration of insulating materials by internal discharge. IEEE Trans PAS PAS-96(1):166–177

    Google Scholar 

  69. Rageb MHSA, Pearmain AJ (1984) An approach to the prediction of the lifetime of electrical insulations. IEEE Trans Electr Insul EI-19(2):107–113

    Google Scholar 

  70. Eriksson AJ, Kroninger H (1984) Accelerated life performance studies on a sample 132 kV XLPE industrial cable installation. In: Proceedings of 30th Session CIGRE, Paris, Paper 15–05

    Google Scholar 

  71. Wolzak GG, van de Laar AMFJ, Steennis EF (1986) Partial discharges and the electrical aging of XLPE cable insulation. EUT Report 86-E-160, Eindhoven University of Technology

    Google Scholar 

  72. Gamez-Garcia M, Bartnikas R, Wertheimer MR (1984) Circular degradation patterns on XLPE surfaced electrodes. In: IEEE international symposium on electrical insulation, pp 356–359

    Google Scholar 

  73. Gamez-Garcia M, Bartnikas R, Wertheimer MR (1990) Modification of XLPE exposed to partial discharges at elevated temperature. IEEE Trans Electr Insul 25(4):688–692

    Article  CAS  Google Scholar 

  74. Fabiani D, Montanari GC (2001) The effect of voltage distortion on aging acceleration of insulation systems under partial discharge activity. IEEE Electr Insul Mag 17(3):24–33

    Article  Google Scholar 

  75. Stone G, Campbell S, Tetreault S (2000) Inverter-fed drives: Which motor stators are at risk? IEEE Ind Appl Mag 6(5):17–22

    Article  Google Scholar 

  76. Morshuis PHF (1993) Partial discharge mechanisms. Ph.D. Thesis, Delft University of Technology

    Google Scholar 

  77. Devins JC (1984) The physics of partial discharges in solid dielectrics. IEEE Trans Electr Insul 19:475–495

    Article  Google Scholar 

  78. Jeon SI, Nam SH, Shin DS, Park IH, Han MK (2000) The correlation between partial discharge characteristics and space charge accumulation under AC voltage. In: IEEE conference on electrical insulation and dielectric phenomena (CEIDP), pp 653–656

    Google Scholar 

  79. Al-Ghamdi SA, Varlow BR (2004) Treeing in mechanically prestressed electrical insulation. IEEE Trans Dielectr Electr Insul 11(6):130–135

    Article  Google Scholar 

  80. Mason JH (1959) Dielectric breakdown in solid insulation. In: Progress in dielectrics, New York, Wiley, pp 1–58

    Google Scholar 

  81. Artbauer J (1965) Elektrische Festigkeit von Polymeren. Kolloid-Zeitschrift und Zeitschrift fur Polymere 202:15–25

    Article  CAS  Google Scholar 

  82. Frohlich H (1947) On the theory of dielectric breakdown in solids. R Soc London Proc A 188(1015):521–532

    Article  CAS  Google Scholar 

  83. Yoda B, Sakaba M (1969) Treeing degradation of high voltage polyethylene insulated cable. Hitachi Rev 18:406–412

    CAS  Google Scholar 

  84. Golinski J (1968) Mehrphasiger Mechanismus des Ionisations-Durchschlages von festen Kunstoffen. Wissenschaftliche Zeitschrift der Elektrotechnik 10:193–205

    Google Scholar 

  85. Bahder G, Dakin TW, Lawson JH (1974) Analysis of treeing type breakdown. In: International conference on large high voltage electric systems (CIGRE). Paris, Conference report 15-05

    Google Scholar 

  86. Yamano Y, Okada M (2001) Reduction of PD in a void by additives of azobenzoic compound in HDPE insulating material. IEEE Trans DEI 8(6):889–896

    Article  CAS  Google Scholar 

  87. Notingher PV, Plopeanu M (2010) Fast development of electrical trees. Part II: trees development. EEA-Electrotehnica Electronica Automatica 58(1):24–31

    Google Scholar 

  88. Harlin A, Shuvalov M, Ovsienko V, Juhanoja J (2002) Insulation morphology effects on the electrical treeing resistance. IEEE Trans DEI 9(3):401–405

    Article  CAS  Google Scholar 

  89. https://www.researchgate.net/publication/251880167_Imaging_and_Analysis_Techniques_for_Electrical_Trees_using_X-ray_Computed_Tomography

  90. Dissado LA (2002) Understanding electrical trees in solid: from experiment to theory. IEEE Trans DEI 9:483–497

    Article  Google Scholar 

  91. Dissado LA, Dodd SJ, Champion JV, Williams PI, Alison JM (1997) Propagation of electrical tree structures in solid polymeric insulation. IEEE Trans Dielectrics Electr Insul 4(3):259–279

    Article  CAS  Google Scholar 

  92. https://www.google.ro/search?q=electrical+trees+in+polypropylene

  93. Liu M, Liu Y, Li Y, Zheng P, Rui H (2017) Growth and partial discharge characteristics of electrical tree in XLPE under AC-DC composite voltage. IEEE Trans Dielectrics Electr Insul 24(4):2282–2290

    Article  Google Scholar 

  94. Chen G, Tham CH (2009) Electrical treeing characteristics in XLPE power cable insulation in frequency range between 20 and 500 Hz. IEEE Trans DEI 16:179–188

    Article  CAS  Google Scholar 

  95. Schurch R, Ardila-Rey J, Montana J, Angulo A, Bradley RS (2019) 3D characterization of electrical tree structures. IEEE Trans DEI 26(1):220–228

    Article  CAS  Google Scholar 

  96. Karmakar S (2018) Study of degradation phenomena of solid insulation used in extra high voltage cable under alternating voltage stress. In: 2nd IEEE international conference on dielectrics (ICD-2018), Budapest, Hungary

    Google Scholar 

  97. Varlow BR, Auckland DW (1998) The influence of mechanical factors on electrical treeing. IEEE Trans Dielectr Electr Insul 5:761–765

    Article  CAS  Google Scholar 

  98. Liu Y, Xiao Y, Su Y, Chen X, Zhang C, Li W (2016) Electrical treeing test of DC cable XLPE insulation under DC voltage and high temperature. In: IEEE international conference on dielectrics (ICD). https://doi.org/10.1109/icd.2016.7547725

  99. Densley RJ (1979) An investigation into the growth of electrical trees in XLPE cable insulation. IEEE Trans Electr Insul 14:148–158

    Article  Google Scholar 

  100. Gao Y, Deng YD, Du BX, Li SW, Wang N (2016). Electrical treeing behavior in XLPE under kHz-AC voltage. In: IEEE international conference on dielectrics (ICD). https://doi.org/10.1109/icd.2016.7547718

  101. Shimizu N, Uchida K, Rasikawan S (1992) Electrical tree and deteriorated region in polyethylene. IEEE Trans Electr Insul 27(3):513–518

    Article  CAS  Google Scholar 

  102. Zheng X, Chen G (2008) Propagation mechanism of electrical tree in XLPE cable insulation by investigating a double electrical tree structure. IEEE Trans DEI 15:800–807

    Article  CAS  Google Scholar 

  103. Shimizu N, Laurent C (1998) Electrical tree initiation. IEEE Trans DEI 5:651–659

    Article  Google Scholar 

  104. Kato H, Maekawa N, Inoue S, Fujita H (1974) Effect and mechanism of some new voltage stabilizers for cross-linked polyethylene insulation. In: Proceedings of conference electrical insulation & dielectric phenomena. https://doi.org/10.1109/ceidp.1974.7735913

  105. Englund V, Huuva R, Gubanski SM, Hjertber T (2009) Synthesis and efficiency of voltage stabilizers for XLPE cable insulation. IEEE Trans DEI 16(5):1455–1461

    Article  CAS  Google Scholar 

  106. Gross RE, Hunt GH (1967) Dielectric compositions containing halogenated voltage stabilizing additives. Patent US3350312, Simplex Wire and Cable Co

    Google Scholar 

  107. Hunt GH (1967) Stabilized dielectric composition containing 2-bromonaphthalene. Patent US3346500, Simplex Wire and Cable Company

    Google Scholar 

  108. Hunt GH (1969) Voltage stabilized solid polyolefin dielectric. Patent US3445394, Simplex Wire and Cable Company

    Google Scholar 

  109. Hunt GH (1970) Voltage stabilized polyolefin dielectric compositions using liquid-aromatic compounds and voltage stabilizing agents. Patent US3542684, Simplex Wire and Cable Company

    Google Scholar 

  110. Kenney ND, Petterson VS (1969) High voltage polyolefin insulated cable. Patent US3482033, Simplex Wire and Cable Co.

    Google Scholar 

  111. Sekii Y, Maruta K, Okada T (1998) Effect of inclusions in XLPE insulations on electrical trees generated by AC and grounded DC voltage. In: IEEE 6th international conference on conduction and breakdown in solid dielectrics, Vaesteras, Sweden, pp 317–320

    Google Scholar 

  112. Sekii Y, Ohbayashi T, Uchimura T, Mochizuki K, Maeno T (2002) The effects of material properties and inclusions on the space charge profiles of LDPE and XLPE. In: IEEE conference on electrical insulation and dielectric phenomena (CEIDP), pp 635–639

    Google Scholar 

  113. Hirai N, Maeno Y, Tanaka T, Ohki Y, Okashita M, Maeno T (2003) Effect of crosslinking on space charge formation in crosslinked polyethylene.In: IEEE 7th international conference on properties and applications of dielectric material, Nagoya, Japan, pp 917–920

    Google Scholar 

  114. Hirai N, Minami R, Tanaka T, Ohki Y, Okashita M, Maeno T (2003) Chemical group in crosslinking byproducts responsible for charge trapping in polyethylene. IEEE Trans DEI 10:320–330

    Article  CAS  Google Scholar 

  115. Sekii Y, Hirota K, Chizuwa N (2001) Effects of antioxidants on electrical tree generation in XLPE. In: IEEE 7th International conference on solid dielectrics, Eindhoven, Netherlands, pp 460–464

    Google Scholar 

  116. Sekii Y, Tanaka D, Saito M, Chizuwa N, Kanasawa K (2003) Effects of antioxidants on the initiation and growth of electrical trees in XLPE. In: IEEE conference on electrical insulation and dielectric phenomena (CEIDP), pp 661–665

    Google Scholar 

  117. Bamji SS, Bulinski AT, Densley J (1989) Electrical tree suppression in high-voltage polymeric insulation. Patent US4870121, Canadian Patents and Development Ltd., Canada

    Google Scholar 

  118. Martinotto L, Peruzzotti F, Del Brenna M (2001) Cable, in particular for transport or distribution of electrical energy and insulating composition. Patent WO0108166, Pirelli Cavi e Sistemi S.p.A., Italy

    Google Scholar 

  119. Gubin SP, Smirnova SA, Denisovich LI, Lubovich AA (1971) Redox properties of cyclopentadienylmetal compounds I. Ferrocene, ruthenocene, osmocene. J Organometallic Chem 30(2):243–255

    Article  CAS  Google Scholar 

  120. Koo JY, Cross JD, El-Kahel M, Meyer CT, Filippini JC (1983) Electrical behaviour and structure of water trees in relation to their propagation. In: Conference on electrical insulation & dielectric phenomena, pp 301–306

    Google Scholar 

  121. Ross R (1998) Inception and propagation mechanisms of water treeing. IEEE Trans DEI 5:660–680

    Article  CAS  Google Scholar 

  122. Meyer CT (1983) Water absorption during water treeing in polyethylene. IEEE Trans Electr Insul 18:28–31

    Article  Google Scholar 

  123. Steennis EF, Kreuger FH (1990) Water treeing in polyethylene cables. IEEE Trans Electr Insul 25:989–1028

    Article  CAS  Google Scholar 

  124. Ross R, Geurts WSM, Smit JJ (1988) FTIR microspectroscopy and analysis of water trees in XLPE. In: IEE conference on publication no. 289, DMMA, pp 313–137

    Google Scholar 

  125. Chen JL, Filippini JC (1993) The morphology and behavior of the water tree. IEEE Trans Electr Insul 28:271–286

    Article  Google Scholar 

  126. Steennis EF, van den Heuvel CC, Boone W (1987) Accelerated aging to predict water tree behavior in extruded cables. In: international conference on polymer insulated power cables, Paris, pp 161–167

    Google Scholar 

  127. Bamji S, Bulinski A, Densley J, Garton A, Shimizu N (1984) Water treeing in polymeric insulation. In: Proceeding of CIGRE, Paper 15-07

    Google Scholar 

  128. Visata O (2001) Influence des arborescences d’eau sur les propriétés diélectriques des polymères. Thèse, Université POLITEHNICA de Bucarest—Université Joseph Fourier Grenoble

    Google Scholar 

  129. Ashcraft AC (1977) Treeing update part III: water trees, Kabelitems 152, Union Carbide Corporation. Based on water treeing in polymer dielectrics. In: World electrotechnical congress

    Google Scholar 

  130. Radu I (1997) Behavior of some insulating materials in high electric fields. Ph.D. Thesis, UPB, Bucharest

    Google Scholar 

  131. Stancu C, Notingher PV (2010) Influence of the surface defects on the absorption/resorption currents in polyethylene insulations. Sci Bull Univ Politehnica Bucharest Ser C 72(2):161–170

    Google Scholar 

  132. Stancu C (2008) Caractérisation de l’état de vieillissement des isolations polymères par la mesure d’arborescences et de charges d’espace. Ph.D. Thesis, University POLITEHNICA of Bucharest

    Google Scholar 

  133. Filippini JC, Meyer CT, El-Kahel M (1982) Some mechanical aspects of the propagation of water trees in polyethylene. In: Proceedings of CEIDP, pp 629–637

    Google Scholar 

  134. Bulinski AT, Crine J-P, Noirhommg B, Densley RJ, Bamji S (1998) Polymer oxidation and water treeing. IEEE Trans DEI 5(4):558–570

    Article  CAS  Google Scholar 

  135. Visata OI, Teissedre G, Filipinni JC, Notingher PV (2001) An investigation on the distribution of ions and water in water trees by FTIR microspectroscopy. In: Proceedings of IEEE 7th international conference on solid dielectrics, (ICSD), Eindhoven, Netherlands, pp 373–376 (2001)

    Google Scholar 

  136. Chiru O, Notingher PV, Jipa S, Setnescu T, Setnescu R (1996) Influence of antioxidant concentration on the water trees propagation. In: Electrotehnica’96, Bucharest, Romania, pp 157–164, 6–7 Dec 1996

    Google Scholar 

  137. Crine J-P (1998) Electrical, chemical and mechanical processes in water treeing. IEEE Trans DEI 5:681–694

    Article  CAS  Google Scholar 

  138. Nagao M, Watanabe S, Murakami Y, Murata Y, Sekiguchi Y, Goshowaki M (2008) Water tree retardation of MgO/LDPE and MgO/XLPE nanocomposites. In: International symposium on electrical insulating materials (ISEIM), Mie, Japan, pp 483–486

    Google Scholar 

  139. Notingher PV, Ciuprina F, Radu I, Filippini JC, Gosse B, Jipa S, Setnescu T, Setnescu R, Mihalcea T (1996):Studies on water treeing and chemiluminescence on irradiated polyethylene. In: Proceedings of international symposium on electrical insulation, Montreal, Canada, pp 163–167

    Google Scholar 

  140. Notingher PV, Ciuprina F, Radu I (1998): The influence of ageing process on the shape and the propagation kinetics of the water trees in needle-plane polyethylene samples. In: Proceedings of the 1998 IEEE 6th international conference on conduction and breakdown in solid dielectrics (ICSD), Västeras, Sweden, pp 341–344

    Google Scholar 

  141. Nunes SL, Shaw MT (1980) Water treeing in polyethylene—a review of mechanisms. IEEE Trans Electr Insul 15:437–450

    Article  Google Scholar 

  142. Shaw MT, Shaw SH (1984 ) Water treeing in solid dielectrics. IEEE Trans Electr Insul 5:419–452

    Article  Google Scholar 

  143. Swapan K, Battacharya K, Brown N (1984) Micromechanisms of crack initiation in thin films and thick sections of polyethylene. J Mater Sci 19:2519–2532

    Article  Google Scholar 

  144. Zeller H (1991) Noninsulating properties of insulating materials. In: Proceedings of IEEE conference on electrical insulation and dielectric phenomena, pp 19–30

    Google Scholar 

  145. Wang Z, Evans JW, Wright PK (2011) Thermodynamics of water treeing. IEEE Trans DEI 18(3):840–846

    Article  Google Scholar 

  146. Crine J-P, Jow J (2005) A water treeing model. IEEE Trans DEI 12(4):801–808

    Article  Google Scholar 

  147. Filippini JC, Meyer CT (1988) Water treeing using the water needle method: the influence of the magnitude of the electric field at the needle tip. IEEE Trans DEI 23(2):275–278

    CAS  Google Scholar 

  148. Bernstein BS, Srinivas N, Lee PN (1975) Electrochemical treeing studies: voltage stress, temperature, and solution penetration effects under accelerated test conditions. In: Annual report conference on electrical insulation & dielectric phenomena, pp 296–302

    Google Scholar 

  149. Srinivas NN, Doepken HC (1978) Electrochemical treeing in PE and XLPE insulated cables—frequency effects and impulse degradation. In: IEEE conference on electrical insulation dielectrics phenomena, pp 106–109

    Google Scholar 

  150. Srinivas NN, Allam SM, Doepken Jr HC (1976) The effect of crosslinking and crosslinking agent by products on tree growth in polyethylene. In: Proccedings of conference on electrical insulation & dielectric phenomena, pp 380–385

    Google Scholar 

  151. Bulinski A, Densley RJ (1981) The voltage breakdown characteristics of miniature XLPE cables containing water trees. IEEE Trans DEI 16(4):319–326

    Google Scholar 

  152. Favrie E, Auclair H (1980) Effect of water on electrical properties of extruded synthetical insulations application on cables. IEEE Trans PAS 99(3):1225–1234

    Article  Google Scholar 

  153. Filippini JC, Meyer CT (1982) Effect of frequency on the growth of water trees in polyethylene. IEEE Trans DEI 17(6):554–559

    Google Scholar 

  154. Densley J, Bulinski A, Sudarshan T (1979) The effects of water immersion, voltage and frequency on the electric strength of miniature XLPE cables. In: Annual report CEIDP, pp 469–479

    Google Scholar 

  155. Bulinski AT, Bamji SS, Densley RJ (1986) The effect of frequency and temperature on water tree degradation of miniature XLPE cables. IEEE Trans DEI 21(4):645–650

    Google Scholar 

  156. Dissado LA, Wolfe SV, Fothergill JC (1983) A study of the factors influencing water tree growth. IEEE TransDEI 18:565–585

    Google Scholar 

  157. Dissado LA, Wolfe SV, Filippini JC, Meyer CT, Forthergill JC (1988) An analysis of field – dependent water tree growth models. IEEE Trans DEI 23(3):345–356

    CAS  Google Scholar 

  158. Yoshimura N, Noto F (1982) Voltage and frequency dependence of bow-tie trees in crosslinked polyethylene. IEEE Trans DEI 17(4):363–367

    Google Scholar 

  159. Suzuki H, Mukai S, Ohki Y, Nakamichi Y, Ajiki K (1988) Water-tree characteristics in low-density PE under simulated inverter voltages. IEEE Trans DEI 5(2):256–260

    Article  Google Scholar 

  160. Kaneko D, Maeda T, Ito T, Ohki Y, Konishi T, Nakamichi Y, Okashita M (2004) Role of number of consecutive voltage zero-cossings in propagation of water trees in polyethylene. IEEE Trans DEI 11(4):708–714

    Article  CAS  Google Scholar 

  161. Maeda T, Kaneko D, Ohki Y, Konishi T, Nakamichi Y, Okashita M (2005) Voltage zero-crossing as a factor inducing water trees. IEE J Trans Fundam Mater 125(1):51–56

    Article  Google Scholar 

  162. Ohki Y, Ishikawa H, Morita G, Konishi T, Nakamichi Y, Tanimoto M (2008) Role of the voltage zero-crossing in the growth of water trees—effect of superposition method of a high-frequency voltage and a low-frequency voltage. In: International conference on condition monitoring and diagnosis, pp 328–331

    Google Scholar 

  163. Ohki Y (2008) Aiming at a more rigorous understanding in electrical insulating materials research. IEEE Trans DEI 15(5):1201–1214

    Article  Google Scholar 

  164. Bahder G, Katz C, Lawson J, Vahlstrom W (1974) Electrical and electrochemical treeing effect in polyethylene and crosslinked polyethylene cables. IEEE Trans PAS 93:977–990

    Article  Google Scholar 

  165. Bahder G, Katz C (1972) Treeing effects in PE and XLPE insulation. In: Conference on electrical insulation & dielectric phenomena, pp 190–199

    Google Scholar 

  166. Yoshimitsu T, Mitsui H, Hishida K, Yoshida H (1983) Water treeing phenomena in humid air. IEEE Trans DEI 18(4):396–401

    Google Scholar 

  167. Ross, R., Megens, M.: Dielectric properties of water trees. In: IEEE International Conference on Properties and Applications of Dielectric Materials, pp 455–458 (2000)

    Google Scholar 

  168. Tabata T, Nagai H, Fukuda T, Iwata Z (1972) Sulfide attack and treeing of polyethylene insulated cables—cause and prevention. IEEE Trans PPAS 91(4):1354–1360

    CAS  Google Scholar 

  169. Sletbak J, Ildstad E (1983) The effect of service and test conditions on water tree growth in XLPE cables. IEEE Trans Power App 102(7):2069–2076

    Article  Google Scholar 

  170. Tanaka T, Fukuda T (1974) Residual strain and water trees in XLPE and PE cables. In: Conference on electrical insulation & dielectric phenomena, pp 239–249

    Google Scholar 

  171. Tu DM, Kao KC (1983) Effects of hydrostatic pressure on water treeing properties of polyethylene. In: Conference on electrical insulation & dielectric phenomena, pp 307–311

    Google Scholar 

  172. Mashikian M, Groeger JH (1987) Ionic impurities in extruded cable insulation. In: Proceedings of JICABLE, Versailles, pp 199–205

    Google Scholar 

  173. Garton A, Groeger JH, Henry JL (1990) Ionic impurities in crosslinked polyethylene cable insulation. IEEE Trans DDEI 25(2):427–434

    CAS  Google Scholar 

  174. Meyer CT, Chamel A (1980) Water and ion absorption by polyethylene in relation to water treeing. IEEE Trans DEI 15(5):389–393

    Google Scholar 

  175. Duna M, Senchiu M, Notingher PV, Radu I, Ciuprina F (1996) Influence of nature and impurities concentration on water trees propagation. In: “Electrotehnică’96”, Bucharest, pp 165–171

    Google Scholar 

  176. Fournie R, Perret J, Recoup P, Le Gall Y (1978) Water treeing in polyethylene for HV cables. In: Conference of IEEE international symposium on electrical insulation, pp 110–115

    Google Scholar 

  177. Ross R, Geurts WSM, Smit J, Van der Maas JH, Lutz ETG (1990) The hydrophilic nature of water trees. In: Conference Record of International Symposium on Electrical Insulation

    Google Scholar 

  178. Li HM, Fouracre RA, Crichton BH, Banks VAA (1994) The influence of ions on the thermally stimulated discharge current spectra of water-treed additive-free low-density polyethylene. IEEE Trans DEI 1(6):1084–1093

    Article  CAS  Google Scholar 

  179. Filippini JC, Koo JY, Chen JL (1989) Electrode Influence on the Properties of Water Trees in Polyethylene. IEEE Trans. DEI 12(1):75–82

    Google Scholar 

  180. Henkel HJ, Kalkner W, Muller N (1981) Electrochemical Treeing—Strukturen in Modelkabelisolierungen aus Thermoplastischem oder Vernetztem Polyethylen. Siemens Forschungs und Entwicklungs Bericht, vol 10, no 4, pp 205–214, Springer Verlag

    Google Scholar 

  181. Ashcraft AC (1977) Factors influencing treeing identified. Electrical World, p 3840

    Google Scholar 

  182. Kalkner W, Muller U, Peschke E, Henkel HJ, von Olshausen R (1982) Water treeing in PE and XLPE Insulated HV Cables. CIGRE. Paper No. 21-07

    Google Scholar 

  183. T. G. Marsh, A. P. Smith, J. Drysale. Long Term Aging of Water Immersed XLPE Insulations. Int. Conf. on Polym. Insul. Power Cables, 1987, p. 181–186

    Google Scholar 

  184. Morita M, Hanai M, Shimanuki H (1973) Some preventive methods for water treeing in PE and XLPE insulation. In: Annual Report CEIDP, pp 303–312

    Google Scholar 

  185. Saure M, Golz W (1985) Uber den Einfluss von Mischungskomponenten auf das Water-Tree Wachstum in Polyolefin-Materialen und Prufverfahren zur Bewertung des Water-Tree Wachstums. Electrotechnische Gesellschaft Fachberichte 16, VDE-Verlag GmbH, pp 127–131

    Google Scholar 

  186. Namiki Y, Shimanuki H, Aida F, Morita M (1980) A study on microvoids and their filling i crosslinked polyethylene insulated cables. IEEE Trans Electr Insul 15(6):473–480

    Article  Google Scholar 

  187. Golz W (1985) Water-tree growth in low-density polyethylene. Coll Polym Sci 263:286–292

    Article  Google Scholar 

  188. Poggi Y, Raharimalala V, Filippini JC, De Bellet JJ, Matey G (1990) Water treeing as mechanical damage. IEEE Trans Electr Insul 25(6):1056–1065

    Article  Google Scholar 

  189. Ross R (1993) Effect of aging conditions on the type of water treeing. IEEE Trans Electr Insul Mag 9(5):7–13

    Article  Google Scholar 

  190. Noțingher PV, Ciuprina F, Radu I, Filippini JC, Gosse B, Jipa S, Setnescu T, Setnescu R, Mihalcea T (1996) Studies on water-treeing and chemiluminescence on irradiated polyethylene. In: Conference of IEEE international symposium on Electrical Insulation, pp 163–167

    Google Scholar 

  191. Garton A, Densley RJ, Bulinski A (1987) Oxidation and water tree formation in service-aged XLPE cables. IEEE Trans DEI 22:405–412

    Google Scholar 

  192. Spadaro G, Calderaro E, Rizzo G (1989) Radiation induced degradation and crosslinking of low density polyethylene. Effect of dose rate and integrated dose. Acta Polym 40:702–705

    Google Scholar 

  193. Cross JD, Koo JY (1984) Some observations on the structure of water trees. IEEE Trans DEI 19(4):303–306

    Google Scholar 

  194. Franke H, Heumann H, Kaubisch D (1984) Testing possibilities and results regarding water aging of PE/XLPE insulated medium voltage cables. In: International conference on polymer insulated power cables, pp 113–118

    Google Scholar 

  195. Matsuura K, Ohno H, Ishibashi A, Yatsuka K, Hirotsu K, Kajiki I, Shinagawa J (1987) Investigation on deterioration of 22 to 66 kV XLPE cables removed from actual service lines. In: International conference on polymer insulated power cables, pp 471–476

    Google Scholar 

  196. Katz C, Eager Jr GS, Leber ER, Fischer FE (1984) Influence of water on dielectric strength and rejuvenation of in-service aged URD cables. In: International conference on polymer insulated power cables, Paris, pp 127–134

    Google Scholar 

  197. Oyegoke BS, Birtwhistle B, Lyall J, Saha TK (2006) Water migration in degraded XLPE cables. In: Annual report CEIDP, pp 704–707

    Google Scholar 

  198. Bahder G, Eager GS, Lukac RG (1974) Influence of electrochemical trees on the electrical properties of extruded polymeric insulation. In: Annual report CEIDP, pp 289–301

    Google Scholar 

  199. Tanaka T, Fukuda T, Suzuki S, Nitta Y, Goto H, Kubota K (1974). Water trees in crosslinked polyethylene power cable. Paper T73497-5. IEEE PES summer meeting & EHV/UHV conference, pp 693–702

    Google Scholar 

  200. Fukagawa H, Okamoto T, Hozumi N, Shibata T (1987) Developments of methods to estimate the residual life of XLPE cables deteriorated by water trees. In: International conference on polymer insulated power cables, pp 457–462

    Google Scholar 

  201. Karner H, Stietzel U, Saure M, Golz W (1984) Determination of small water contents in solid organic insulating and the influence of moisture on the dielectric properties. In: Conférence Internationale des Grandes Réseaux Electriques à Haute Tension, CIGRE, Paper 15-02

    Google Scholar 

  202. Wojtas S (1987) Investigations of polyethylene insulation resistivity of power cables. In: International conference on polymer insulated power cables, pp 436–440

    Google Scholar 

  203. Notingher PV, Stancu C, Notingher Jr P (2009) Water trees—electrical aging factor for power cable insulation. Science Bulletin of the “POLITEHNICA” University of Timisoara, Tom 54, No. 68, Special Issue (Proceedings of the 8th International Power System Conference), pp 369–376

    Google Scholar 

  204. Srinivas NN, Doepken HC, McKean AL, Biskeborn MC (1978) Electrochemical treeing in cable. EPRI Final Report EL-647

    Google Scholar 

  205. Tharning P, Gafvert U (1995) High voltage dielectric frequency response measurements on polyethylene samples during water tree aging. In: IEEE 5th international conference on conduction and breakdown in solid dielectrics, pp 671–675

    Google Scholar 

  206. Densley J (1995) Aging and diagnostics in extruded insulations for power cables. In: IEEE 5th international conference on conduction and breakdown in solid dielectrics, pp 1–15

    Google Scholar 

  207. Toyoda T, Mukai S, Ohki Y (1999) Conductivity and permittivity of water tree in polyethylene. In: Annual Report CEIDP, pp 577–580

    Google Scholar 

  208. Thomas AJ, Saha TK (2008) A new dielectric response model for water tree degraded XLPE insulation—Part A: model development with small sample verification. IEEE Trans DEI 15(4):1131–1134

    Article  CAS  Google Scholar 

  209. Katsuta G, Toya A, Ying L, Okashita M, Aida F, Ebinuma Y, Ohki Y (1999) Experimental investigation on the cause of harmfulness of the blue water tree to XLPE cable insulation. IEEE Trans Electr Ins 6:887–891

    Article  CAS  Google Scholar 

  210. Steennis EF (1989) Water treeing, the behavior of water trees in extruded cable insulation. Ph.D. Thesis University Delft. ISBN 90-353-1022-5; KEMA, Arnhem

    Google Scholar 

  211. Radu I, Acedo M, Notingher PV, Frutos F, Filippini JC (1997) The danger of water-trees in polymer insulated power cables evaluated from calculations of electric field in the presence of water trees of different shapes and permittivity distributions. J Electrostat 40–41:343–347

    Google Scholar 

  212. Crine J-P, Pelissou S, St-Onge H, St-Piere J, Kennedy G, Houdayer A, Hinrichsen P (1987) Elemental and ionic impurities in cable insulation and shields. In: International conference on polymer insulated power cables, pp 206–213

    Google Scholar 

  213. Kao KC, Hwang W (1981) Electrical transport in solids. In: International series in the science of the Solid State, vol 14. Pergamon Press

    Google Scholar 

  214. Fouracre RA, Given MJ, Crichton BH (1986) The effects of alternating electric fields on migration in solid dielectrics. J Phys Chem 19:1949–1958

    CAS  Google Scholar 

  215. Given MJ, Fouracre RA, Crichton BH (1987) The role of ions in the mechanism of water tree growth. IEEE Trans DEI EI-22(2):151–156

    Google Scholar 

  216. Fouracre RA, Banford HM, Given MJ (1993) Charge migration processes in insulators. High Temp Chem Proc 2:257–264

    CAS  Google Scholar 

  217. Sletbak J (1979) A theory of water tree initiation and growth. IEEE Trans PAS 98(4):1358–1365

    Article  Google Scholar 

  218. Toyoda T, Mukai S, Ohki Y, Li Y, Maeno T (2001) Estimation of conductivity and permittivity of water tree in PE from space charge distribution measurements. IEEE Trans. DEI 8:111–116

    Article  Google Scholar 

  219. Holé S, Ditchi T, Lewiner J (2003) Non-destructive methods for space charge distribution measurements: what are the differences? IEEE Trans DEI 10(4):670–677

    Article  Google Scholar 

  220. Plopeanu M (2012) Estimation of power cables lifetime. Ph.D. Thesis, University POLITEHNICA of Bucharest

    Google Scholar 

  221. Li J, Zhao X, Yin G, Li S, Zhao J, Ouyang B (2011) The effect of accelerated water tree ageing on the properties of XLPE cable insulation. IEEE Trans Dielectrics Electr Insul 18(5):1562–1569

    Article  CAS  Google Scholar 

  222. Bow KE (1989) The development of underjacket moisture barrier cable as a counter measure against treeing. IEEE Trans Power Energy Soc 5(1):47–53

    Article  Google Scholar 

  223. Powers WF Jr (1993) An overview of water-resistant cable designs. IEEE Trans Ind Appl 29(5):831–833

    Article  Google Scholar 

  224. Malik NH, Qureshi MI, Al-Arainy AA, Saati MN, Al-Natheer OA, Anam S (2012) Performance of water tight cables produced in Saudi Arabia under accelerated aging. IEEE Trans DEI 19(2):490–497

    Article  CAS  Google Scholar 

  225. Pélissou S, Harp R, Bristol R, Densley J, Fletcher C, Katz C, Kuchta F, Kung D, Person T, Smalley M, Smith JT III (2008) Review of possible methods for defining tree retardant crosslinked polyethylene (TRXLPE). IEEE Electr Ins Mag 24(5):22–30

    Article  Google Scholar 

  226. Henkel H-J, Muller N, Nordmann J, Rogler W, Rose W (1987) Relationship between the chemical structure and the effectiveness of additives in inhibiting water-trees. IEEE Trans DEI EI-22(2):157–161

    Google Scholar 

  227. Saure M, Kalkner W (1987) On water tree testing of materials. Rep. of CIGRE TF 15 – 06 – 05, CIGRE Symp. 05 – 87, Section 6.2, No. 620–10

    Google Scholar 

  228. McMahon EJ (1981) A tree growth inhibiting insulation for power cable. IEEE Trans DEI 16(4):304–318

    Google Scholar 

  229. Fisher EJ, McClung LB (1986) Long-life insulation for industrial and utility cables. IEEE Trans Ind Appl 5:946–951

    Article  Google Scholar 

  230. Boggs SA, Mashikian MS (1994) Role of semiconducting compounds in water treeing of XLPE cable insulation. IEEE Electr Insul Mag 10(1):23–27

    Article  Google Scholar 

  231. Boggs SA, Xu JJ (2001) Water treeing-filled versus unfilled cable insulation. IEEE Electr Insul Mag 17(1):23–29

    Article  Google Scholar 

  232. *** Standard Test Method for Relative Resistance to Vented Water-Tree Growth in Solid Dielectric Insulating Materials, ASTM D6097–97 (1997)

    Google Scholar 

  233. *** Specifications for Thermoplastic and Cross-Linked Polyethylene Insulated Shielded Power Cables Rated 5 Through 46 kV, AEIC CS5–82, 8th ed (1982)

    Google Scholar 

  234. Ohki Y, Ebinuma Y, Katakai S (1998) Space charge formation in water-treed insulation. IEEE Trans DEI 5(5):707–712

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ilona Plesa’s contributions were accomplished within the K-Project PolyTherm at the Polymer Competence Center Leoben GmbH (PCCL, Austria) within the framework of the COMET-program of the Federal Ministry for Transport, Innovation and Technology and the Federal Ministry for Digital and Economic Affairs. Funding is provided by the Austrian Government and the State Government of Styria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petru V. Noțingher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Noțingher, P.V., Stancu, C., Pleșa, I. (2021). Failure Mechanisms in XLPE Cables. In: Thomas, J., Thomas, S., Ahmad, Z. (eds) Crosslinkable Polyethylene. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-0514-7_11

Download citation

Publish with us

Policies and ethics