Skip to main content

Structural Design and Performance of XLPE for Cable Insulation

  • Chapter
  • First Online:
Crosslinkable Polyethylene

Abstract

Polyethylene’s inherent characteristics of toughness, resistance to chemicals and moisture, low temperature flexibility and excellent electrical properties, along with low cost and easy processability, make it a very desirable material for insulating low-, medium- and high-voltage electric cables. A historical perspective of power cable materials development and design considerations is provided, which provides a basis for the widespread use of crosslinked low-density polyethylene materials today. Structural characteristics are linked to fundamental, rheological, chemical and dielectric material properties. The industry specifications guiding the technical material design choices are presented. Some material advancements in the insulation field are also discussed in context to the application environments to which they are exposed. Fundamental material properties impacting the performance of cables are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernstein B, Thue W (2003) Historical perspectives of electrical cables. In Thue W (ed) Electrical power cable engineering, 2nd ed, Mercel Dekker, New York

    Google Scholar 

  2. Black R (1983) The history of electric wires and cables. Peter Peregrinus Ltd.

    Google Scholar 

  3. Edison, US Pat 251552, “Street Pipes” Dec 1881

    Google Scholar 

  4. Orton H (2013) History of underground power cables. IEEE Electr Insulation Mag 29(4)

    Google Scholar 

  5. Bamberger E, Tschimer F (1900) Ueber die Einwirkung von Diazomethan auf b-Arylhydroxylamine. Berichte der Dueschten chemischen Gesellschaft zu Berlin 33:955–959

    Google Scholar 

  6. [claims student Hindermann mentioned white substance, later determined to be (-CH2-)x, in his dissertation in Zurich in 1897]

    Google Scholar 

  7. Von Pechmann H (1989) Ueber Diazomethan und Nitrosoacylamine. Berichte der Dueschten chemischen Gesellschaft zu Berlin 31:2640–2646

    Google Scholar 

  8. Fawcett EW, Gibson RO, Perrin MW, Paton JG, Williams EG (1937) Improvements in or relating to the polymerization of ethylene. British Patent 471590

    Google Scholar 

  9. Perrin MW (1953) The story of polythene. Research 6

    Google Scholar 

  10. Dobbin C (2017) An industrial chronology of polyethylene. In Spalding M, Chatterjee A (eds) Handbook of industrial polyethylene and technology. Wiley and Sons

    Google Scholar 

  11. Pinkney P, Wiley RH (1953) Curing of polyethylenes. US Patent 2628214

    Google Scholar 

  12. Gilbert A, Precopio F (1963) Irradiated filler-containing polyethylene. US Patent 3084114

    Google Scholar 

  13. Precopio F, Gilbert A (1959) Curable polyethylene comprising a peroxide containing tertiary carbon atoms, and a filler, and process of curing same. US Patent 2888424

    Google Scholar 

  14. Precopio F, Gilbert A (1999) The invention of chemically crosslinked polyethylene. IEEE Electr Insulation Mag 15(1)

    Google Scholar 

  15. Vostovich J, Bailey C (1960) Extrusion of crosslinked polyethylene and process of coating wire thereby. US Patent 2930083

    Google Scholar 

  16. Ward R (1967) Method of making polyethylene insulated electrical conductors. US Patent 3325325

    Google Scholar 

  17. US Patent US3225018A to Union Carbide Nathan Zutty, filed in Dec 1961, published in Dec 1965

    Google Scholar 

  18. GB1286460A to Dow Corning, Henry George Scott, filed 12-20-1968, published in 8-23-1972

    Google Scholar 

  19. A Brief History of EPR Dielectric, EPR Cable Technology Consortium—University of Connecticut; https://eprcable.ims.uconn.edu/epr-cables/; contact Dr. Y. Cao

  20. Vahlstrom W (1971) Paper presented at IEEE Conference on Underground Distribution, Detroit, Mich.

    Google Scholar 

  21. Lawson RH, Vahlstrom W (197) IEEE Trans PAS 824

    Google Scholar 

  22. Lawson J, Vahlstrom Jr W (1973) Investigation of insulation deterioration in 15 kV polyethylene cables removed from service, Part II. IEEE Trans PAS 92:824–831

    Google Scholar 

  23. Miyashita T (1971) Deterioration of water-immersed polyethylene coated wire by treeing. IEEE Trans Electr Insul 6:129–135

    Google Scholar 

  24. Lawson JH, Vahlstrom W Jr (1973) Investigation of insulation deterioration in 15 kV and 22 kV polyethylene cables removed from service—part II. IEEE Trans PAS 92:824–835

    Google Scholar 

  25. Bahder G, Katz C, Lawson JH, Vahlstrom Jr W (1974) Electrical and electrochemical treeing effects in polyethylene and crosslinked polyethylene cables. IEEE Trans PAS 93:977–990

    Google Scholar 

  26. Ballard DGH, Burgess AN, Dekoninch JM, Roberts EA (1987) The ‘crystallinity’ of PVC. Polymer 28:3–9

    Google Scholar 

  27. Noel OF, Carley JF (1975) Properties of polypropylene-polyethylene blends. Polym Eng Sci 15(2):117–126

    Google Scholar 

  28. Kohan Melvin (1995) Nylon plastics handbook. Carl Hanser Verlag, Munich

    Google Scholar 

  29. Hougham GG, Cassidy PE, Johns K, Davidson T (1999) Fluoropolymers 2. Springer

    Google Scholar 

  30. Rysselberghe PV (1932) Remarks concerning the Clausius-Mossotti Law. J Phys Chem 36(4):1152–1155

    Google Scholar 

  31. Bartnikas R (1983) Dielectric loss in solids. In: Bartnikas R, Eichhorn R (eds) Engineering dielectrics—Volume IIA—Electrical properties of solid insulating materials: molecular structure and electrical behavior. ASTM Publications

    Google Scholar 

  32. Bartnikas R (ed) Engineering dielectrics: volume IIB—electrical properties of solid insulating materials: measurement techniques. American Society for Testing and Materials—Special Technical Publication 926

    Google Scholar 

  33. Raju G (2003) Dielectrics in electric fields. Marcel Dekker, Inc

    Google Scholar 

  34. Dissado LA, Fothergill JC (1992) Electrical degradation and breakdown in polymers. Peter Peregrinus Ltd.

    Google Scholar 

  35. Fischer and Nissen (1976) Breakdown behavior of polyethylene. IEEE Trans Electr Insul EI-11(2)

    Google Scholar 

  36. Li D et al (2019) Effect of crystallinity of polyethylene with different densities on breakdown strength and conductance property. Materials 12(11):1746

    Google Scholar 

  37. Hosier I, Vaughan A, Swingler S (1997) Structure-property relationships in polyethylene blends: the effect of morphology on electrical breakdown strength. J Mater Sci 32:4523

    Google Scholar 

  38. Shimizu N et al (1998) Electrical tree initiation. IEEE Trans Dielectrics Electr Insul 5(5):651

    Google Scholar 

  39. Ishibashi A et al (1998) A study of treeing phenomena in the development of insulation for 500 kV XLPE cables. IEEE Trans Dielectrics Electr Insul 5(5):695

    Google Scholar 

  40. Gross R, Hunt G (1967) Dielectric compositions containing halogenated voltage stabilizing additives. US Patent 3,350,312; Simplex Wire and Cable

    Google Scholar 

  41. Heidt L (1970) Solid dielectric polyolefin compositions containing various voltage stabilizers. US Patent 3,522,183; Simplex Wire and Cable

    Google Scholar 

  42. Hunt G (1970) Voltage stabilized polyolefin dielectric compositions using liquid-aromatic compounds and voltage stabilizing additives. US Patent 3,542,684; Simplex Wire and Cable

    Google Scholar 

  43. Eichhorn R (1983) Treeing in solid organic dielectric materials. In: Bartnikas R, Eichhorn R (eds) Engineering dielectrics—Volume IIA—electrical properties of solid insulating materials: molecular structure and electrical behavior. ASTM Publications

    Google Scholar 

  44. Kisin S et al (2009) Polym Degrad Stab 94:171

    Google Scholar 

  45. Englund V et al (2009) Polym Degrad Stab 94:823

    Google Scholar 

  46. Bostrom J-O et al (2003) Stress enhancement of contaminants in XLPE insulation used for power cables. IEEE Electr Insul Mag 19(4)

    Google Scholar 

  47. Bahder G, Eager, GS, Silver DA, Lukac R (1912) Criteria for determining performance in service of crosslinked polythylene insulated power cables. IEEE Trans Power Apparatus Syst 95(5):1552, with reference to a 1912 paper by Larmor and Larmor (Royal Society of London, 1912)

    Google Scholar 

  48. N.H. Malik, et al, Electrical Insulation in Power Systems, Marcel Dekker, New York 1998, with reference to H. Bateman, Partial Differential Equations of Mathematical Physics, Cambridge University Press, New York, 1944

    Google Scholar 

  49. Bowers AB, Cath PG (1941) The maximum electric field strength for several simple electrode configurations. Phillips Tech Rev 6, #270

    Google Scholar 

  50. Orton H, Hartlein R (eds) Long-life XLPE-insulated power cables. Orton Consulting Engineers International, Ltd.

    Google Scholar 

  51. Thue W (2003) Electrical power cable engineering, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  52. Steennis EF, Kreuger FH (1990) Water treeing in polyethylene cables. IEEE Trans Electr Insul 25:989

    Google Scholar 

  53. Pelissou S, Harp R, Bristol R, Densley J, Fletcher C, Katz C, Kuchta F, Kung D, Person T, Smalley M, Smith J (2008) A review of possible methods for defining tree retardant crosslinked polyethylene (TRXLPE). IEEE Electr Insul Mag 24(5):22

    Google Scholar 

  54. ASTM D6097 (2016) Standard test method for relative resistance to vented water tree growth in solid dielectric insulating materials. ASTM International

    Google Scholar 

  55. US Patent 4305849A (1980) Polyolefin composition containing high molecular weight polyethylene glycol useful for electrical insulation. Nippon Unicar Company

    Google Scholar 

  56. Farkas A (1985) Insulation composition for cables. WO 1985005216A1

    Google Scholar 

  57. CIGRE TB722 (2018) Recommendations for additional testing for submarine cables from 6 kV (Um = 7.2 kV) up to 60 kV (Um = 72.5 kV). CIGRE Study Committee—WG B1.55

    Google Scholar 

  58. Cree S et al (2015) Potential use of new water tree retardant insulation in offshore wind farm array cables. In: Jicable ’15, B1.3

    Google Scholar 

  59. Caronia P et al (2019) Advancements in TR-XLPE insulation technology to enable use in high-voltage cable applications. In: Jicable’19, B5.1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurav S. Sengupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Person, T.J., Sengupta, S.S., Caronia, P.J. (2021). Structural Design and Performance of XLPE for Cable Insulation. In: Thomas, J., Thomas, S., Ahmad, Z. (eds) Crosslinkable Polyethylene. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-0514-7_10

Download citation

Publish with us

Policies and ethics