Skip to main content

CO2 Conversion into Chemicals and Fuel: India’s Perspective

  • Chapter
  • First Online:
Climate Change and Green Chemistry of CO2 Sequestration

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

India has come up with many policies and programs to take action toward mitigation of carbon dioxide from the energy sector through rapid augmentation of renewable energy growth and energy efficiency improvement. However, there is also need to unify abatement and recycling measures like amplification of low-carbon technologies. Emissions from various industries can be captured and reused for the production of various value-added chemicals and fuels. This chapter briefly discusses all the chemical reactions which require carbon dioxide as a primary product, giving a brief detail of electrocatalytic and photocatalytic pathways in which the anthropogenic carbon dioxide can be activated and subsequently converted into value-added chemicals/fuels. Apart from that, certain issues related to scaling up the technology have been highlighted. The author concludes by putting light on various problems related to the technologies, which need efforts and research so as to achieve practically viable catalysts for CO2 conversion to chemicals and fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IPCC (2006) Guideline for national green house gas inventories. (https://www.ipcc-nggip.iges.or.jp/support/Primer_2006GLs.pdf)

  2. UNFCCC (2018) India second biennial update report to the united nations framework convention on climate change

    Google Scholar 

  3. PTI (2017) PM launches saubhagya scheme to provide power to all, Bus. Line, (http://www.thehindubusinessline.com/news/pm-launches-saubhagya-scheme-toprovide-power-toall/article9872678.ece). (Accessed 6 Jan 2018)

  4. BP Statistical Review of World Energy 2019 (2017), 68th edition

    Google Scholar 

  5. Kyoto Protocol to the United Nations Framework Convention on Climate Change at united nation (1998)

    Google Scholar 

  6. Central Electricity Authority (CEA) (2018) National electricity plan. CEA, New Delhi

    Google Scholar 

  7. Kaya Y (1990) Impact of carbon dioxide emission control on GNP growth: interpretation of proposed scenarios

    Google Scholar 

  8. Sharma C, Singh R (2012) Estimates of emissions from coal fired thermal power plants in India. In: Proceedings of 2012 international emission inventory conference, Florida, August 13–16, 1–22

    Google Scholar 

  9. Sethia VK, Vyas S (2017) An innovative approach for carbon capture and sequestration on a thermal power plant through conversion to multi-purpose fuels—A feasibility study in indian context. Energy Procedia, 114:1288–1296

    Google Scholar 

  10. Al-Mamoori A, Krishnamurthy A, Rownaghi AA, Rezaei F (2017) Carbon capture and utilization update. Energy Technol 5:834–849

    Article  Google Scholar 

  11. Finn C, Schnittger S, Yellowlees LJ, Love JB (2012) Molecular approaches to the electrochemical reduction of carbondioxide. Chem Commun 48:1392–1399

    Article  Google Scholar 

  12. Usman M, Wan Daud WMA (2015) Recent advances in the methanol synthesis via methane reforming processes. RSC Adv 5, 21945–21972

    Google Scholar 

  13. Gerard P, Van Der Laan, Beenackers AACM (1999) Beenackers, kinetics and selectivity of the fischer–tropsch synthesis: A literature review. Catal Rev 41:255–318

    Google Scholar 

  14. Coates GW, Moore DR (2004) Discrete metal-based catalysts for the copolymerization of CO2 and epoxides: Discovery, reactivity, optimization, and mechanism. Angew Chem Int Ed 43:6618–6639

    Article  Google Scholar 

  15. Darensbourg DJ, Ganguly P, Choi W (2006) Metal salen derivatives as catalysts for the alternating copolymerization of oxetanes and carbon dioxide to afford polycarbonates. Inorg Chem 45:3831–3833

    Article  Google Scholar 

  16. Qin Z, Thomas CM, Lee S, Coates GW (2003) Cobalt-based complexes for the copolymerization of propylene oxide and CO2: active and selective catalysts for polycarbonate synthesis. Angew Chem Int Ed 42:5484–5487

    Article  Google Scholar 

  17. Le GA, Abanades S, Flamant G (2011) CO2 and H2O splitting for thermochemical production of solar fuels using non stoichiometric ceria and ceria/zirconia solid solutions. Energy Fuels 25:4836–4845

    Article  Google Scholar 

  18. Loutzenhiser PG, Steinfeld A (2011) Solar syngas production from CO2 and H2O in a two-step thermochemical cycle via Zn/ZnO redox reactions: Thermodynamic cycle analysis. Int J Hydrogen Energy 36:12141–12147

    Article  Google Scholar 

  19. Smestad GP, Steinfeld A (2012) Review: photochemical and thermochemical production of solarfuels from H2O and CO2 using metaloxide catalysts. Ind Eng Chem Res 51:11828–11840

    Google Scholar 

  20. Acién Fernández FG, González-López CV, Fernández Sevilla JM, Molina Grima E (2012) Conversion of CO2 into biomass by microalgae: How realistic a contribution may it be to significant CO2 removal. Appl Microbiol Biotechnol 96:577–586

    Article  Google Scholar 

  21. Barton EE, Rampulla DM, Bocarsly AB. (2008) Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical. Cell J Am Chem Soc 6342–6344

    Google Scholar 

  22. Kumar B, Llorente M, Froehlich J, Dang T, Sathrum A, Kubiak CP (2012) Photo- Chemical and photoelectrochemical reduction of CO2. Annu Rev Phys Chem 63:541–569

    Article  Google Scholar 

  23. Zhao J, Wang X, Xu Z, Loo JSC (2014) Hybrid catalysts for photoelectrochemical reduction of carbondioxide: a prospective review on semiconductor/metal complexo-catalystsystems, J Mater Chem A 15228–15233

    Google Scholar 

  24. Das S, Wan Daud WMA (2014) Photocatalytic CO2 transformation into fuel: are view on advances in photocatalyst and photo reactor. Renew Sustain Energy Rev 39:765–805

    Article  Google Scholar 

  25. Yin G, Nishikawa M, Nosaka Y, Srinivasan N, Atarashi D, Sakai E, Miyauchi M (2015) Photocatalytic carbondioxide reduction by copperoxide nanocluster-grafted niobate nanosheets. ACS Nano 9:2111–2119

    Article  Google Scholar 

  26. Parkinson BA, Weaver PF (1984) Photoelectrochemical pumping of enzymic carbon dioxide reduction. Nature 309:148–149

    Article  Google Scholar 

  27. Zhang S, Kang P, Meyer TJ (2014) Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J Am Chem Soc 136:1734–1737

    Article  Google Scholar 

  28. Kuhl KP, Hatsukade T, Cave ER, Abram DN, Kibsgaard J, Jaramillo TF (2014) Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. So J Am Chem c., 136:14107–14113

    Google Scholar 

  29. Peterson AA, Norskov JK (2012) Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J Phys Chem Lett 3:251–258

    Article  Google Scholar 

  30. Hori Y, Murata A, Takahashi R (1989) Formation of hydrocarbons in the electrochemical reduction of carbon-dioxide at a copper electrode in aqueous-solution. J Chem Soc - Farad Trans I, 85:2309–2326

    Google Scholar 

  31. Kuhl KP, Cave ER, Abram DN, Jaramillo TF (2012) New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci 5:7050–7059

    Article  Google Scholar 

  32. Hara K, Tsuneto A, Kudo A, Sakata T (1994) Electrochemical reduction of CO2 on a Cu electrode under high-pressure—factors that determine the product selectivity. J Electrochem Soc 141:2097–2103

    Article  Google Scholar 

  33. Kas R, Kortlever R, Yilmaz H, Koper MTM, Mul G (2015) Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions. Chemelectrochem 2:354–358

    Article  Google Scholar 

  34. Kyriacou GZ, Anagnostopoulos AK (1993) Influence of CO2 partial-pressure and the supporting electrolyte cation on the product distribution in CO2 electroreduction. J Appl Electrochem 23:483–486

    Google Scholar 

  35. Gupta N, Gattrell, MacDougall BM (2006) Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. J Appl Electrochem 36:161–172

    Google Scholar 

  36. Murata A, Hori Y (1991) Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bull Chem Soc Jpn 64:123–127

    Article  Google Scholar 

  37. Ooka H, Figueiredo MC, Koper MTM (2017) Competition between hydrogen evolution and carbon dioxide reduction on copper electrodes in mildly acidic media. Langmuir 33:9307–9313

    Article  Google Scholar 

  38. Schouten KJP, Kwon Y, van der Ham CJM, Qin Z, Koper MTM (2011) A new mechanism for the selectivity to C-1 and C-2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem Sci 2:1902–1909

    Article  Google Scholar 

  39. Hori Y, Wakebe H, Tsukamoto T, Koga O (1995) Adsorption of CO accompanied with simultaneous charge-transfer on copper single-crystal electrodes related with electrochemical reduction of CO2 to hydrocarbons. Surf Sci 335:258–263

    Article  Google Scholar 

  40. Hori Y, Takahashi I, Koga O, Hoshi N (2003) Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. J Mol Catal A: Chem 199:39–47

    Article  Google Scholar 

  41. Huang Y, Handoko AD, Hirunsit P, Yeo BS (2017) Electrochemical reduction of CO2 using copper single-crystal surfaces: effects of CO* coverage on the selective formation of ethylene. ACS Catal 7:1749–1756

    Google Scholar 

  42. Takahashi I, Koga O, Hoshi N, Hori Y (2002) Electrochemical reduction of CO2 at copper single crystal Cu(S)-[n (111) x (111)] and Cu(S)-[n (110) x (100)] electrodes. J Electroanal Chem 533:135–143

    Article  Google Scholar 

  43. Kumari N, Haider MA, Tiwari PK, Basu S (2019) Carbon dioxide reduction on the composite of copper and praseodymium-doped ceria electrode in a solid oxide electrolysis cells. Ionics, https://doi.org/10.1007/s11581-019-02837-5

  44. Kumari N, Haider MA, Basu S (2017) Reduction of CO2 to CO in presence of H2 on strontium doped lanthanum manganite cathode in solid oxide electrolysis cell. J Chem Sci 0–5

    Google Scholar 

  45. Steven MP, Connor PA, Tao S, Irvine JTS (2005) Electronic transport in the novel SOFC anode material La1-x SrxCr0.5 Mn0.5 O 3±δ. Solid state ionics 177:2005–2008

    Google Scholar 

  46. Kumari N, Haider MA, Tiwari PK, Basu S (2015) Density functional theory study of CO2 adsorption and reductionon stoichiometric and doped Ceria. ECS Trans 68(3):155–166

    Article  Google Scholar 

  47. Singh S, Phukan B, Mukherjee C, Verma A (2015) Salen ligand complexes as electrocatalysts for direct electrochemical reduction of gaseous carbon dioxide to value added products. RSC Adv 5:3581–3589

    Google Scholar 

  48. Basu S, Shegokar A., Biswal D (2017) Synthesis and characterization of supported Sn/G-Al2O3 and Sn/ZSM5 catalysts for CO2 reduction in electrochemical cell. J CO2 Utilization 18:80–88

    Google Scholar 

  49. Dey S, Ahmed MdE, Dey A (2018) Activation of Co(I) state in a cobalt-dithiolato catalyst for selective and efficient CO2 reduction to CO. Inorg Chem 57:5939–5947

    Article  Google Scholar 

  50. Sen P, Mondal B, Saha D, Rana A, Dey A (2019) Role of 2nd sphere H-bonding residues in tuning the kinetics of CO2 reduction to CO by Iron porphyrin complexes. Dalton Trans. https://doi.org/10.1039/c8dt03850c

  51. Kumari N, Haider MA, Agarwal M, Sinha N, Basu S, (2016) Role of reduced CeO (110) surface for CO reduction to CO and Methanol. J Phys Chem C, J Phys Chem C, 120:16626–16635

    Google Scholar 

  52. Mohamed EA, Zahran ZN, Naruta Y (2015) Efficient electrocatalytic CO2 reduction with a molecular cofacial iron porphyrin dimer. Chem Commun 51:16900–16903

    Article  Google Scholar 

  53. Kang P, Zhang S, Meyer TJ, Brookhart M (2014) Rapid selective electrocatalytic reduction of carbon dioxide to formate by an iridium pincer catalyst immobilized on carbon nanotube electrodes. Angew Chem Int Ed 53:8709–8713

    Article  Google Scholar 

  54. Yahaya AH, Gondal MA, Hameed A (2004) Selective laser enhanced photocatalytic conversion of CO2 into methanol. Chem Phys Lett 400:206–212

    Article  Google Scholar 

  55. Lehn JM and Ziessel R (1982) Photochemical generation of carbon monoxide and hydrogen by reduction of carbon dioxide and water under visible light irradiation. Proc Nat Acad Sci U.S.A. 279:701–704

    Google Scholar 

  56. Li Y, Wang W-N, Zhan Z, Woo M-H, Wu C-Y, Biswas P (2010) Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Appl Catal B 100:386–392

    Google Scholar 

  57. Liu Q, Zhou Y, Kou J, Chen X, Tian Z, Gao J, Yan S, Zou Z (2010) High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. J Am Chem Soc 132:14385–14387

    Article  Google Scholar 

  58. Liu Q, Zhou Y, Tian Z, Chen X, Gao J, Zou Z (2012) Zn2GeO4 crystal splitting toward sheaf-like, hyperbranched nanostructures and photocatalytic reduction of CO2 into CH4 under visible light after nitridation. J Mater Chem 22:2033–2038

    Article  Google Scholar 

  59. Nath RK, Zain M (2015) Artificial photosynthesis in concrete surface by using LiNbO3. Adv Environ Biol 9:1–9

    Google Scholar 

  60. Li X, Li W, Zhuang Z, Zhong Y, Li Qing, Wang Liya (2012) Photocatalytic reduction of carbon dioxide to methane over SiO2-Pillared HNb3O8. J Phys Chem C 116(30):16047–16053

    Article  Google Scholar 

  61. Yang W-C, Rodriguez BJ, Gruverman A, Nemanich R (2004) Polarization-dependent electron affinity of LiNbO3 surfaces. Appl Phys Lett 85:2316–2318

    Article  Google Scholar 

  62. Xi G, Ouyang S, Li P, Ye J, Ma Q, Su N, Bai H, Wang C (2012) Ultrathin W18O49 nanowires with diameters below 1 nm: synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. Angew Chem Int Ed 51:2395–2399

    Article  Google Scholar 

  63. Julio N, de la Peña O’Shea, Víctor A, Coronado JP, Serrano JM, David P (2012) Effect of copper on the performance of ZnO and ZnO1−x Nx oxides as CO2 photoreduction catalysts. Catal Today, 209:21–27

    Google Scholar 

  64. He Z, Wang D, Fang H, Chen J, Song S (2014) Highly efficient and stable Ag/AgIO3 particles for photocatalytic reduction of CO2 under visible light. Nanoscale 6:10540–10544

    Article  Google Scholar 

  65. Ghadimkhani G, de Tacconi NR, Chanmanee W, Janaky C, Rajeshwar K (2013) Efficient solar photoelectrosynthesis of methanol from carbon dioxide using hybrid CuO-Cu2O semiconductor nanorod arrays. Chem Commun 49:1297–1299

    Article  Google Scholar 

  66. Li P, Hu H, Xu J, Jing H, Peng H, Lu J, Wu C, Ai S (2014) New Insights into the photo-enhanced electrocatalytic reduction of carbon dioxide on MoS2-Rods/TiO2 NTs with unmatched energy band. Appl Catal B 147:912–919

    Article  Google Scholar 

  67. Dong B-X, Qian SL, Bu F-Y, Wu YC, Feng L-G, Teng Y-L, Liu W-L, Li ZW (2018) Electrochemical reduction of CO2 to CO by a heterogeneous catalyst of fe-porphyrin-based metal-organic framework. ACS Appl Energy Matter 1(9):4662–4669

    Article  Google Scholar 

  68. Zhang X, Wu Z, Zhang X, Li L, Li Y, Xu H, Li X, Yu1 X, Zhang Z, Liang Y, Hailiang W (2017) Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nature Commun 8:14675

    Google Scholar 

  69. Rao H, Lim C-H, Bonin J, Miyake GM, Robert M (2018) Visible-light-driven conversion of CO2 to CH4 with an organic sensitizer and an iron porphyrin catalyst. J Am Chem Soc 140(51):17830–17834

    Article  Google Scholar 

  70. El-Zahab B, Donnelly D, Wang P (2008) Particle-tethered NADH for production of methanol from CO2 catalyzed by coimmobilized enzymes. Biotechnol Bioeng 99:508−514

    Google Scholar 

  71. Sun Q, Jiang Y, Jiang Z, Zhang L, Sun X, Li J (2009) Greenand efficient conversion of CO2 to methanol biomimetic coimmobilization of three dehydrogenases in protamine-templated titania. Ind Eng Chem Res 48:4210–4215

    Article  Google Scholar 

  72. Woolerton TW, Sheard S, Chaudhary YS, Armstrong FA (2012) Enzymes and bio-inspired electrocatalysts in solar fuel devices”, Energy Env Sci, 5:7470–7490

    Google Scholar 

  73. Xu S-W, Lu Y, Li J, Jiang Z-Y, Wu H (2004) Efficient conversion of CO2 to methanol catalyzed by three dehydrogenases co-encapsulated in an alginate—Silica (ALG − SiO2) Hybrid Gel. Ind Eng Chem Res 45:4567–4573

    Article  Google Scholar 

  74. Huan TN, Simon P, Rousse G, Génois I, Artero V, Fontecave M (2017) Porous dendritic copper: an electrocatalyst for highly selective CO2 reduction to formate in water/ionic liquid electrolyte. Chem Sci 8:742–747

    Article  Google Scholar 

  75. Jeyalakshmi V, Mahalakshmy R, Krishnamurthya KR, Viswanathan B (2018) Strontium titanates with perovskite structure as photo catalysts for reduction of CO2 by water: influence of Co-doping with N, S & Fe. Catal Today 300:152–159

    Article  Google Scholar 

  76. Kumar P, Sain B, Jain SL (2014) Photocatalytic reduction of carbon dioxide to methanol using a ruthenium trinuclear polyazine complex immobilized on graphene oxide under visible light irradiation. J Mater Chem A 2:11246–11253

    Google Scholar 

  77. Hezam A, Namratha K, Drmosh AQ, Ponnamma D, Wang J, Prasad S, Ahamed M, Cheng C, Byrappa K (2020) CeO2 nanostructures enriched with oxygenvacancies for photocatalytic CO2 reduction. ACS Appl Nano Mater 3(1):138–148

    Article  Google Scholar 

  78. Jeyalakshmi V, Tamilmani S, Mahalakshmy R, Bhyrappa P, Krishnamurthy KR, Viswanathan B (2016) Sensitization of La Modified NaTaO3 with cobalt tetra phenyl porphyrin for photo catalyticreduction of CO2 by water with Uv-Visible light. J Mol Catal A: Chem 420:200–207

    Article  Google Scholar 

  79. Kumar P, Bansiwal A, Labhsetwarb N, Jain SL (2015) Visible light assisted photocatalytic reduction of CO2 using graphene oxide supported heteroleptic ruthenium complex. Green Chem 17:1605–1609

    Google Scholar 

  80. Singhal N, Kumar U (2012) Fabrication of visible-light-responsive InVO4 for photoreduction of CO2. Chem Select 2:3534–3537

    Google Scholar 

  81. Mishra B, Mishra S, Satpati B, Chaudhary YS (2019) Engineering the surface of a polymeric photocatalyst for stable solar-to-chemical fuel conversion from seawater. ChemSusChem 12:3383–3389

    Article  Google Scholar 

  82. Chaudhary YS, Woolerton TW, Allen CS, Warner JH, Pierce E, Ragsdalec SW, Armstrong FA (2012) Visible light-driven CO2 reduction by enzyme coupled CdS nanocrystals. Chem Commun 48:58–60

    Article  Google Scholar 

  83. Liyanage AD, Perera SD, Tan K, Chabal Y, Balkus KJ (2014). Synthesis, characterization, and photocatalytic activity of Y-Doped CeO2 Nanorods ACS catalysis 4(2):577–584

    Google Scholar 

  84. Malik K, Singh S, Verma A, Suddhasatwa B (2016) Electrochemical reduction of CO2 for synthesis of green fuel. WIRES: Energy & Environ 6(4):1–17

    Google Scholar 

  85. Gag Garima, Basu Suddhasatwa (2015) Studies on degradation of copper nano particles in cathode for CO2 electrolysis to organic compounds. Electrochim Acta 177:359–365

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suddhasatwa Basu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niharika, Chaudhary, Y.S., Basu, S. (2021). CO2 Conversion into Chemicals and Fuel: India’s Perspective. In: Goel, M., Satyanarayana, T., Sudhakar, M., Agrawal, D.P. (eds) Climate Change and Green Chemistry of CO2 Sequestration. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0029-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0029-6_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0028-9

  • Online ISBN: 978-981-16-0029-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics