Skip to main content

CFD Analysis of Chemical Looping Combustion with Special Emphasis on Indian Coal: A Review

  • Chapter
  • First Online:
Climate Change and Green Chemistry of CO2 Sequestration

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Soaring of average temperature and change in climate pattern is posing challenge to find out a reliable and economical solution of reducing carbon dioxide percentage from the atmosphere. Out of various methods of capturing carbon dioxide, chemical looping combustion (CLC) is proving to be the most efficient and economical method. Although many researchers did experimental investigation of CLC, prior to experimentation, it is necessary to perform numerical simulation to determine the optimum working parameters. The literature on CFD simulation of CLC is very limited. This paper reviews the recent work done by researchers on CFD simulation of CLC with different qualities of coal including Indian coal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AR:

Air reactor

CD-CLC:

Coal direct CLC

CFD:

Computational fluid dynamics

CLC:

Chemical looping combustion

CLOU:

Chemical looping with oxygen uncoupling

DEM:

Discrete element method

FR:

Fuel reactor

OC:

Oxygen carrier

PDE:

Partial differential equation

TG-DSC-MS:

Thermal analyser-differential scanning calorimeter-mass spectrometer

TGA:

Thermal-gravimetric analyser

References

  1. Abad A, Adánez J, de Deigo LF, Gayán P, Labiano FG, Lyngfelt A (2013) Fuels reactor model validation: assessment of the key parameters affecting the chemical looping combustion of coal. Int J Greenhouse Gas Control 19:541–551

    Article  Google Scholar 

  2. Ahmed B, Lu H (2014) Modelling of chemical looping combustion of methane using a Ni-based oxygen carrier. Energy Fuels 28(5):3420–3429

    Article  Google Scholar 

  3. Alobaid F, Ströhle J, Epple B (2013) Extended CFD/DEM model for the simulation of circulating fluidized bed. Adv Powder Technol 24(1):403–415

    Article  Google Scholar 

  4. Arrhenius S (1896) On the influence of carbonic acid in the air upon the temperature of the ground. Philos Mag 41(251):237–277

    Article  Google Scholar 

  5. Banerjee S, Agarwal RK (2016) An Eulerian approach to computational fluid dynamics simulation of a chemical-looping combustion reactor with chemical reactions. J Energy Resour Technol 138(4):042201

    Article  Google Scholar 

  6. Banerjee S, Agarwal RK (2018) Computational fluid dynamics modeling and simulations of fluidized beds for chemical looping combustion. In: Breault RW (ed) Handbook of chemical looping technology, pp 303–332

    Google Scholar 

  7. Cooper S, Coronella CJ (2005) CFD simulation of particle mixing in a binary fluidized bed. Powder Technol 151:27–36

    Article  Google Scholar 

  8. Cuadrat A, Abad A, García LF, Gayán P, de Diego LF, Adánez J (2012) Relevance of the coal rank on the performance of the in situ gasification chemical-looping combustion. Chem Eng J 195–196:91–102

    Article  Google Scholar 

  9. Dlugokencky E, Tans P (2016) ESRL global monitoring division–global greenhouse gas reference network. www.esrl.noaa.gov/gmd/ccgg/trends/. Accessed 18 May 2020

  10. Dutta RKR (1940) A critical study of some Indian coal ashes. Geological Survey of India (report)

    Google Scholar 

  11. Enwald H, Almstedt AE (1999) Fluid dynamics of a pressurized fluidized bed: comparison between numerical solutions from two-fluid models and experimental results. Chem Eng Sci 54:329–342

    Article  Google Scholar 

  12. Gryczka O, Heinrich S, Deen NG, van Sint Annaland M, Kuipers JAM, Jacob M, Mörl L (2009) Characterization and CFD-modeling of the hydrodynamics of a prismatic spouted bed apparatus. Chem Eng Sci 64(14):3352–3375

    Google Scholar 

  13. Hassan B, Shamim T (2013) Effect of oxygen carriers on performance of power plants with chemical looping combustion. Procedia Eng 56:407–412

    Article  Google Scholar 

  14. He F, Galinsky N, Li F (2013) Chemical looping gasification of solid fuels using bimetallic oxygen carrier particles: feasibility assessment and process simulations. Int J Hydrogen Energy 38:7839–7854

    Article  Google Scholar 

  15. Hong J, Chaudhry G, Brisson JG, Field R, Gazzino M, Ghoniem AF (2009) Analysis of oxy-fuels combustion power cycle utilizing a pressurized coal combustor. Energy 34(9):1332–1340

    Article  Google Scholar 

  16. Hong J, Chaudhry G, Brisson JG, Field R, Gazzino M, Ghoniem AF (2009) Performance of the pressurized oxy fuels combustion power cycle with increasing operating pressure. In: 34th international technical conference on clean coal and fuels systems, Clearwater, 31 May–4 June 2009

    Google Scholar 

  17. Ishida M, Jin H (1996) A novel chemical-looping combustor without NOx formation. Ind Eng Chem Res 35(7):2469–2472

    Article  Google Scholar 

  18. Jayaraman K, Bonfari E, Marlo N, Gokalp T (2013) High ash Indian and Turkish coal pyrolysis and gasification studies in various ambiences, Cesme Izmir, pp 8–13

    Google Scholar 

  19. Jung J, Gamwo I (2008) Multiphase CFD-based models for chemical looping combustion process: fuels reactor modeling. Powder Technol 183:401–409

    Article  Google Scholar 

  20. Kramp M, Thon A, Hartge E (2012) Chemical looping combustion of solid fuels—modeling and validation. In: International conference on chemical looping, Darmstadt

    Google Scholar 

  21. Leion H, Mattison T, Lyngfelt A (2008) Solid fuels in chemical looping combustion. Int J Greenhouse Gas Control 2:180–193

    Article  Google Scholar 

  22. Mahalatkar K, Kuhlman J, Huckaby ED, O’Brien D (2011) CFD simulation of a chemical looping fuels reactor utilizing solid fuels. Chem Eng Sci 66:3617–3627

    Article  Google Scholar 

  23. Mahalatkar K, Kuhlman J, Huckaby ED, O’Brien T (2011) Computational fluid dynamic simulations of chemical looping fuels reactors utilizing gaseous fuels. Chem Eng Sci 66(3):469–479

    Article  Google Scholar 

  24. Mattison T, Lyngfelt A, Cho P (2001) The use of iron oxide as an oxygen carrier in chemical looping combustion of methane with inherent separation of CO2. Fuels 80:1953–1962

    Article  Google Scholar 

  25. Menon KG, Patnaikuni VS (2017) CFD simulation of fuels reactor for chemical looping combustion of Indian coal. Fuels 203:90–101

    Article  Google Scholar 

  26. Mishra A, Gautam S, Sharma T (2014) Gasification of non-coking coals. In: International conference of advance research and innovation (ICAR), pp 1–6

    Google Scholar 

  27. Parker J (2014) CFD model for the simulation of chemical looping combustion. Powder Technol 265(47):47–53

    Article  Google Scholar 

  28. Patil DJ, Van Sint Annaland M, Kuipers JAM (2005) Critical comparison of hydro-dynamic models for gas–solid fluidized beds—part I: bubbling gas–solid fluidized beds operated with a jet. Chem Eng Sci 60(1):57–72

    Google Scholar 

  29. Patil DJ, Van Sint Annaland M, Kuipers JAM (2005) Critical comparison of hydro-dynamic models for gas–solid fluidized beds—part II: freely bubbling gas–solid fluidized beds. Chem Eng Sci 60(1):73–84

    Google Scholar 

  30. Peng Z, Doroodchi E, Alghamdi Y, Moghtaderi B (2013) Mixing and segregation of solid mixtures in bubbling fluidized beds under conditions pertinent to the fuels reactor of a chemical looping system. Powder Technol 235:823–837

    Article  Google Scholar 

  31. Rubel A, Liu K, Neathery J, Taulbee D (2009) Oxygen carriers for chemical looping combustion of solid fuels. Fuels 88:876–884

    Article  Google Scholar 

  32. Shuai W, Guodong L, Huilin L, Juhui C, Yurong H, Jiaxing W (2011) Fluid dynamic simulation in a chemical looping combustion with two interconnected fluidized beds. Fuels Process Technol 92:385–393

    Article  Google Scholar 

  33. Singh RI, Brink A, Hupa M (2013) CFD modeling to study fluidized bed combustion and gasification. Appl Therm Eng 52:585–614

    Article  Google Scholar 

  34. Sutkar VS, Deen NG, Mohan B, Salikov V, Antonyuk S, Heinrich S, Kuipers JAM (2013) Numerical investigations of a pseudo-2D spout fluidized bed with draft plates using a scaled discrete particle model. Chem Eng Sci 104:790–807

    Article  Google Scholar 

  35. Thon A, Kramp M, Hartge E (2012) Operational experience with a coupled fluidized bed system for chemical looping combustion of solid fuels. In: 2nd international conference on chemical looping, Darmstadt

    Google Scholar 

  36. U.S. Energy Information Administration (2010) International energy outlook 2010. Technical report DOE/EIA-0484. U.S. Department of Energy, Washington

    Google Scholar 

  37. Vaishali S, Roy S, Mills PL (2008) Hydrodynamic simulation of gas-solids downflow reactors. Chem Eng Sci 63:5107–5119

    Article  Google Scholar 

  38. Zhang X, Banerjee S, Agarwal RK (2015) Process simulation and maximization of energy output in chemical-looping combustion using Aspen Plus. Int J Energy Environ 6(2):201–226

    Google Scholar 

  39. Zhang X, Banerjee S, Agarwal RK (2015) Validation of chemical-looping with oxygen uncoupling (CLOU) using Cu-based oxygen carrier and comparative study of Cu, Mn, and Co based oxygen carriers using Aspen Plus. Int J Energy Environ 6(3):247–254

    Google Scholar 

  40. Zhang Z, Zhou L, Agarwal RK (2014) Transient simulations of spouted fluidized bed for coal-direct chemical looping combustion. Energy Fuels 28(2):1548–1560

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit Kumar Parwani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, P., Parwani, A.K. (2021). CFD Analysis of Chemical Looping Combustion with Special Emphasis on Indian Coal: A Review. In: Goel, M., Satyanarayana, T., Sudhakar, M., Agrawal, D.P. (eds) Climate Change and Green Chemistry of CO2 Sequestration. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0029-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0029-6_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0028-9

  • Online ISBN: 978-981-16-0029-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics