Skip to main content

Heterogeneous Catalysis for Chemical Fixation of CO2 via Carbonylation Reactions

  • Chapter
  • First Online:
Climate Change and Green Chemistry of CO2 Sequestration

Part of the book series: Green Energy and Technology ((GREEN))

  • 668 Accesses

Abstract

One of the major constituents of greenhouse gases is carbon dioxide whose concentration in the atmosphere is increasing at an alarming rate due to the disorganized human activities. Therefore, capturing CO2 and utilizing it to make various value-added chemicals is regarded as a green transformation, which thereby balances the carbon footprint. In this chapter, the advances in CO2 as the C1 source by utilizing it as a carbonylating agent for important organic transformations for the synthesis of cyclic carbonate, substituted urea, cyclic urea, carbamates, glycerol carbonate and dimethyl carbonate are discussed. These products have a wide range of applications as specialty solvents, starting materials/intermediates for polymer, paint, agrochemicals, pesticides, herbicides and pharmaceutical industries. Also, a few products like dimethyl carbonate have potential applications as fuel additives. Although CO2 is thermodynamically and kinetically stable molecule, it can be activated by basic sites in the catalyst due to the electron deficiency of the carbonyl carbon at appropriate reaction condition. Various catalyst systems such as metal oxides, mixed metal oxides, supported metal oxides, metal-organic framework, bifunctional catalysts and importance of solvent have been highlighted and discussed in detail for the efficient production of these commercially important chemicals from CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACN:

Acetonitrile

BBA:

N-benzylidenebenzylamine

BDC:

1,4-Benzenedicarboxylicacid

CDI:

1,1’-Carbonyldiimidazole

CLZ:

Conventional co-precipitation method

COCl2:

Phosgene

2-Cypy:

2-Cyanopyridine

DBU:

Dibenzylurea

DMC :

Dimethyl carbonate

DMF:

N,N-Dimethylformamide

DMSO:

Dimethyl sulfoxide

DPU:

Diphenyl urea

ECH:

Epichlorohydrin

GC:

Glycerol carbonate

MBA:

N-methylbenzylamine

MBC:

Methyl benzyl carbamate

MDI :

4,4’-Diphenylmethane diisocyanate

MeOH:

Methanol

MOF:

Metal organic framework

MPC:

Methyl-N-phenylcarbamate

MS:

Molecular sieve

NLZ:

Novel ethylene glycol combustion method

PC:

Propylene carbonate

TBAB:

Tetra-n-butylammonium bromide

TOF:

Turnover frequency

TPD:

Temperature programmed desorption

XDI :

p-Xylylene diisocyanate

ZnGly:

Zinc glycerolate

References

  1. Sakakura T, Choi J-C, Yasuda H (2007) Chem Rev 107:2365–2387

    Article  Google Scholar 

  2. Aresta M, Dibenedetto A, Angelini A (2013) Chem Rev 114:1709–1742

    Article  Google Scholar 

  3. Galadima A, Muraza O (2019) Renew Sust Energ Rev 115:109333

    Article  Google Scholar 

  4. Janssen M, Müller C, Vogt D (2011) Green Chem 13:2247–2257

    Article  Google Scholar 

  5. Clements JH (2003) Ind Eng Chem Res 42:663–674

    Article  Google Scholar 

  6. Shaikh A-AG, Sivaram S (1996) Chem Rev 96:951–976

    Article  Google Scholar 

  7. Tomishige K, Tamura M, Nakagawa Y (2019) Chem Rec 19:1354–1379

    Article  Google Scholar 

  8. Tamura M, Ito K, Nakagawa Y, Tomishige K (2016) J Catal 343:75–85

    Article  Google Scholar 

  9. de Caro P, Bandres M, Urrutigoïty M, Cecutti C, Thiebaud-Roux S (2019) Front Chem 7

    Google Scholar 

  10. Tundo P, Selva M (2002) Acc Chem Res 35:706–716

    Article  Google Scholar 

  11. Dai W-L, Luo S-L, Yin S-F, Au C-T (2009) Appl Catal A Gen 366:2–12

    Article  Google Scholar 

  12. Xiao L-F, Li F-W, Peng J-J, Xia C-G (2006) J Mol Catal A: Chem 253:265–269

    Article  Google Scholar 

  13. Darensbourg DJ, Ulusoy M, Karroonnirum O, Poland RR, Reibenspies JH, Çetinkaya B (2009) Macromolecules 42:6992–6998

    Article  Google Scholar 

  14. North M, Pasquale R, Young C (2010) Green Chem 12:1514–1539

    Article  Google Scholar 

  15. Yoshida Y, Arai Y, Kado S, Kunimori K, Tomishige K (2006) Catal Today 115:95–101

    Article  Google Scholar 

  16. Decortes A (2010) Chem Commun 46:4580–4582

    Article  Google Scholar 

  17. Aresta M, Dibenedetto A, Gianfrate L, Pastore C (2003) J Mol Catal A: Chem 204:245–252

    Article  Google Scholar 

  18. Pescarmona PP, Taherimehr M (2012) Catal. Sci Technol 2:2169–2187

    Google Scholar 

  19. Kulal N, Vasista V, Shanbhag GV (2019) J CO2 Util 33:434–444

    Google Scholar 

  20. Du D-Y, Qin J-S, Li S-L, Su Z-M, Lan Y-Q (2014) Chem Soc Rev 43:4615–4632

    Article  Google Scholar 

  21. Kurisingal JF, Rachuri Y, Gu Y, Choe Y, Park D-W (2020) Chem Eng J (in press)

    Google Scholar 

  22. Song J, Zhang Z, Hu S, Wu T, Jiang T, Han B (2009) Green Chem 11:1031–1036

    Article  Google Scholar 

  23. Han L, Choi H-J, Choi S-J, Liu B, Park D-W (2011) Green Chem 13:1023–1028

    Article  Google Scholar 

  24. Takahashi T, Watahiki T, Kitazume S, Yasuda H, Sakakura T (2006) Chem Commun 1664–1666

    Google Scholar 

  25. Sun J, Wang J, Cheng W, Zhang J, Li X, Zhang S, She Y (2012) Green Chem 14:654–660

    Article  Google Scholar 

  26. Liu M, Liu B, Shi L, Wang F, Liang L, Sun J (2015) RSC Adv 5:960–966

    Article  Google Scholar 

  27. Tamura M, Noro K, Honda M, Nakagawa Y, Tomishige K (2013) Green Chem 15:1567–1577

    Article  Google Scholar 

  28. Bigi F, Maggi R, Sartori G (2000) Green Chem 2:140–148

    Article  Google Scholar 

  29. Kreye O, Mutlu H, Meier MA (2013) Green Chem 15:1431–1455

    Article  Google Scholar 

  30. Shi F, Zhang Q, Ma Y, He Y, Deng Y (2005) J Am Chem Soc 127:4182–4183

    Article  Google Scholar 

  31. Kong D-L, He L-N, Wang J-Q (2010) Synlett 2010:1276–1280

    Article  Google Scholar 

  32. Zhang R, Hua L, Guo L, Song B, Chen J, Hou Z (2013) Chin J Chem 31:381–387

    Article  Google Scholar 

  33. Primo A, Aguado E, Garcia H (2013) ChemCatChem 5:1020–1023

    Article  Google Scholar 

  34. Tamura M, Honda M, Nakagawa Y, Tomishige K (2014) J Chem Technol 89:19–33

    Google Scholar 

  35. Song D, Li D, Xiao X, Cheng C, Chaemchuen S, Yuan Y, Verpoort F (2018) J CO2 Util 27:217–222

    Google Scholar 

  36. Krawczyk T, Jasiak K, Kokolus A, Baj S (2016) Catal Lett 146:1163–1168

    Article  Google Scholar 

  37. Shang J, Guo X, Li Z, Deng Y (2016) Green Chem 18:3082–3088

    Article  Google Scholar 

  38. Honda M, Sonehara S, Yasuda H, Nakagawa Y, Tomishige K (2011) Green Chem 13:3406–3413

    Article  Google Scholar 

  39. Tamura M, Miura A, Honda M, Gu Y, Nakagawa Y, Tomishige K (2018) ChemCatChem 10:4821–4825

    Article  Google Scholar 

  40. Pinto B, Mota CDA, in: Advances in Biorefineries, Elsevier (2014)

    Google Scholar 

  41. Teng WK, Ngoh GC, Yusoff R, Aroua MK (2014) Energ Convers Manage 88:484–497

    Article  Google Scholar 

  42. Sarode-Dolas R (2018) Inter J Lat Technol Eng Manage Appl Sci 7:39

    Google Scholar 

  43. Aresta M, Dibenedetto A, Nocito F, Pastore C (2006) J Mol Catal A: Chem 257:149–153

    Article  Google Scholar 

  44. Liu B, Li C, Zhang G, Yao X, Chuang SS, Li Z (2018a) ACS Catal 8:10446–10456

    Google Scholar 

  45. Liu J, Li Y, Zhang J, He D (2016) Appl Catal A Gen 513:9–18

    Article  Google Scholar 

  46. Liu J, Li Y, Liu H, He D (2018b) Biomass Bioenerg. 118:74–83

    Google Scholar 

  47. George J, Patel Y, Pillai SM, Munshi P (2009) J Mol Catal A: Chem 304:1–7

    Article  Google Scholar 

  48. Li H, Jiao X, Li L, Zhao N, Xiao F, Wei W, Sun Y, Zhang B (2015) Catal Sci Technol 5:989–1005

    Google Scholar 

  49. Li H, Xin C, Jiao X, Zhao N, Xiao F, Li L, Wei W, Sun Y (2015) J Mol Catal A: Chem 402:71–78

    Article  Google Scholar 

  50. Zhang J, He D (2014) J Colloid Interface Sci 419:31–38

    Article  Google Scholar 

  51. Park C-y, Nguyen-Phu H, Shin EW (2017) Mol Catal 435:99–109

    Google Scholar 

  52. Li H, Gao D, Gao P, Wang F, Zhao N, Xiao F, Wei W, Sun Y (2013) Catal Sci Technol 3:2801–2809

    Google Scholar 

  53. Ozorio LP, Mota CJ (2017) ChemPhysChem 18:3260–3265

    Article  Google Scholar 

  54. Ozorio LP, Pianzolli R, da Cruz Machado L, Miranda JL, Turci CC, Guerra AC, Souza-Aguiar EF, Mota CJ (2015) Appl Catal A Gen 504:187–191

    Article  Google Scholar 

  55. Su X, Lin W, Cheng H, Zhang C, Wang Y, Yu X, Wu Z, Zhao F (2017) Green Chem 19:1775–1781

    Article  Google Scholar 

  56. Zhang J, He D (2015) J Chem Technol 90:1077–1085

    Google Scholar 

  57. Wang F, Zhao N, Xiao F, Wei W, Sun Y (2012) Distill: Adv Model Appl 61–90

    Google Scholar 

  58. Ono Y (1997) Catal Today 35:15–25

    Article  Google Scholar 

  59. La KW, Jung JC, Kim H, Baeck S-H, Song IK (2007) J Mol Catal A: Chem 269:41–45

    Article  Google Scholar 

  60. Zhou Y, Wang S, Xiao M, Han D, Lu Y, Meng Y (2012) RSC Adv 2:6831–6837

    Article  Google Scholar 

  61. La KW, Youn MH, Chung JS, Baeck SH, Song IK (2007) Solid state phenom. Trans Tech Publ 119:287–290

    Google Scholar 

  62. Cai Q, Lu B, Guo L, Shan Y (2009) Catal Commun 10:605–609

    Google Scholar 

  63. Honda M, Tamura M, Nakagawa Y, Sonehara S, Suzuki K, Ki F, Tomishige K (2013) Chemsuschem 6:1341–1344

    Article  Google Scholar 

  64. Mann AK, Wu Z, Calaza FC, Overbury SH (2014) ACS Catal 4:2437–2448

    Article  Google Scholar 

  65. Wang S-P, Zhou J-J, Zhao S-Y, Zhao Y-J, Ma X-B (2015) Chin Chem Lett 26:1096–1100

    Article  Google Scholar 

  66. Xin C, Hu M, Wang K, Wang X (2017) Langmuir 33:6667–6676

    Article  Google Scholar 

  67. Tomishige K, Sakaihori T, Ikeda Y, Fujimoto K (1999) Catal Lett 58:225–229

    Article  Google Scholar 

  68. Zhang Z-F, Liu Z-T, Liu Z-W, Lu J (2009) Catal Lett 129:428–436

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganapati V. Shanbhag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shanbhag, G.V., Kulal, N., Vaishnavi, B.J. (2021). Heterogeneous Catalysis for Chemical Fixation of CO2 via Carbonylation Reactions. In: Goel, M., Satyanarayana, T., Sudhakar, M., Agrawal, D.P. (eds) Climate Change and Green Chemistry of CO2 Sequestration. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0029-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0029-6_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0028-9

  • Online ISBN: 978-981-16-0029-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics