Skip to main content

Modeling of Electrothermal Microactuator

  • Conference paper
  • First Online:
Computational Mathematics, Nanoelectronics, and Astrophysics (CMNA 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 342))

Included in the following conference series:

Abstract

This paper presents the modeling of electrothermally actuated bimorph actuator for out-of-plane actuation application. Al-Si bimorph was optimized for higher displacement applications. Temperature distribution analysis of the Al-Si bimorph combination was chosen due to their larger displacement range. The modeling of Al-Si was performed with FEM and analytical analysis. Temperature distribution across the bimorph actuator with respect to length and applied voltage was optimized using FEM, lumped, and analytical analysis. The maximum temperature across Al-Si bimorph was achieved around 106 °C without convection and 85 °C with convection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xie, H., Fedder, G.: CMOS z-axis capacitive accelerometer with comb-finger sensing. In: Proceedings IEEE Micro Electro Mechanical Systems (MEMS), pp. 496–501 (2000)

    Google Scholar 

  2. Yazdi, N., Ayazi, F., Najafi, K.: Micromachined inertial sensors. Proc. IEEE 86(8), 1640–1659 (1998)

    Google Scholar 

  3. Albarbar, A., Mekid, S., Starr, A., Pietruszkiewicz, R.: Suitability of MEMS accelerometers for condition monitoring: an experimental study. Sensors 8, 784–799 (2008)

    Google Scholar 

  4. Mere, V., Vikram Maharshi, A., Agarwal, A.: Thermally actuated MEMS micromirror: design aspects. Asian J. Phys. 23(4), 00–001 (2014a)

    Google Scholar 

  5. Milanovic, V., Matus, G.A., Mccormick, D.T.: Gimbal-Less monolithic silicon actuators for tip-tilt-piston micromirror applications. selected topics in quantum electronics. IEEE J. 10(3), 462–471 (2004)

    Google Scholar 

  6. Maharshi, V., Mere, V., Agarwal, A.: Deaign and fabrication of electro thermal 1-D micro mirror. In: IEEE Electron Devices Kolkata Conference (EDKCON), pp. 419–422. kolkata. India (2018)

    Google Scholar 

  7. Mere, V., Vikram Maharshi, A., Agarwal, A.: Thermally actuated MEMS micromirror: design aspects. Asian J. Phys. 23, 631–640 (2014b)

    Google Scholar 

  8. Abdel-Rahman, E.M., Younis, M.I., Nayfeh, A.H.: Characterization of the mechanical behavior of an electrostatically actuated microbeam. J. Micromech. Microeng. 12(6), 759–766 (2002)

    Google Scholar 

  9. Hassanzadeh, A.: Design Considerations for Basic MEMS Electrostatic Actuators. 978–1–4244–3325–4/09/©2009 IEEE

    Google Scholar 

  10. Harris, N.R., Hill, M., Torah, R., Townsend, R., Beeby, S., White, N.M., Ding, J.: A multilayer thick-film PZT actuator for MEMs applications. Sens. Actuators A 132, 311–316 (2006)

    Google Scholar 

  11. Kanno, I.: Piezoelectric MEMS for energy harvesting. J. Phys.: Conf. Ser. 660, 012001 (2015)

    Google Scholar 

  12. Ogando, K., La Forgia1, N., Zárate, J.J., Pastoriza, H.: Design and characterization of a fully compliant out-of-plane thermal actuator. Sens. Actuators A 188, 349–358 (2012)

    Google Scholar 

  13. Jia, K., Pal, S., Xie, H.: An electrothermal tip–tilt–piston micromirror based on folded dual s-shaped bimorphs. J. Microelectromech. Syst. 18(5) (2009)

    Google Scholar 

  14. Moulton, T., Anantha Suresh, G.K.: Micromechanical Devices with embedded electro-thermal-compliant actuation. Sens. Actuators A 90, 38±48 (2001)

    Google Scholar 

  15. Nilesh, D., Mankameandg, K., Suresh, A.: Comprehensive thermal modelling and characterization of an electro-thermal-compliant micro actuator. J. Micromech. Microeng. 11, 452–462 (2001)

    Google Scholar 

  16. Xie, H., Pan, Y., Fedder, G.K.: A SCS CMOS micromirror for optical coherence tomographic imaging. In: The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, 2002, pp. 495–498. IEEE (2002)

    Google Scholar 

  17. Maharshi, V., Mere, V., Agarwal, A.: Multi-layered [Au/Si3N4/SiO2] thermal actuator realization using metal passivated TMAH micro-machining. Eng. Res. Express, IOP 1, 015006 (2019)

    Google Scholar 

  18. Todd, S.T.: Electrothermomechanical Modelling Of a 1-D Electro thermal MEMS Micromirror

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of Smart Sensor Labs at CSIR- CEERI Pilani.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram Maharshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maharshi, V., Mere, V., Agarwal, A. (2021). Modeling of Electrothermal Microactuator. In: Mukherjee, S., Datta, A., Manna, S., Sahoo, S.K. (eds) Computational Mathematics, Nanoelectronics, and Astrophysics. CMNA 2018. Springer Proceedings in Mathematics & Statistics, vol 342. Springer, Singapore. https://doi.org/10.1007/978-981-15-9708-4_9

Download citation

Publish with us

Policies and ethics