Skip to main content

Challenges of Corporate Ecological Footprint Calculations in the SME Sector in Hungary: Case Study Evidence from Six Hungarian Small Enterprises

  • Chapter
  • First Online:
Agroecological Footprints Management for Sustainable Food System

Abstract

Scientific and social discourse examines primarily the environmental performance of large enterprise actors. Although these large enterprises usually operate on an international level, over half of the added value created in the European Union and thus over half of the environmental damage are generated by small- and medium-sized enterprises (SME). Nevertheless, while the tools and expertise required to measure environmental performance are available for large enterprises, the SME sector has only limited access to these tools.

As part of our research, we have developed an ecological footprint (EF) calculator applicable to the specificities of the SME sector, which has been tested on six Hungarian companies operating in different sectors and organisational frameworks. The test results indicate that the managerial information system of partnerships includes all the main inputs that are necessary to estimate a company’s EF. However, in the case of sole proprietorships, most of the required data can only be acquired by estimation. Our EF calculations on analysed firms cannot be considered as representative data. But on the base of the case studies, we can suggest that our EF calculator for SMEs is suitable to take a more comprehensive survey on EF of Hungarian and international firms, in order to generate sectoral benchmarks. Ecological footprint among analysed enterprises ranged between 5102 and 263,589 global square metres. It is caused mainly by (1) the sector (e.g. constructions have generally larger footprints than office activities) and (2) the size, expressed in number of employees or value added. To increase transparency of the environmental performance of the SME sector, we recommend that the supplementary annex of partnerships includes the main input data necessary for the calculation of the EF in a comparable and consistent way, in natural units of measurement. With such information and our calculator, it would be possible to determine the average environmental impact of the individual sectors, which would provide an appropriate starting point for the environmental investments of enterprises.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The original calculator is accessible at http://www.carbon-calculator.org.uk/ downloaded: 2019.03.03.

  2. 2.

    During the analyses we have considered Scope 3, i.e. well-to-wheel factors of the GHG Protocol in all cases.

  3. 3.

    TÁRKI is a Social Research Institute in Hungary.

  4. 4.

    1000 HUF = 3.08 (EUR, 2019.07.08).

  5. 5.

    To show the order of magnitude, the measure of the ratio is global square metre/thousand HUF.

Abbreviations

BFF:

Best foot forward

CSR:

Corporate social responsibility

EF:

Ecological footprint

EPA:

Environmental Protection Agency

EQF:

Equivalence factors

GFN:

Global Footprint Network

gha:

Global hectare

GHG:

Greenhouse gas

NEF:

National Energy Foundation

SDGs:

Sustainable Development Goals

SMEs:

Small- and medium-sized enterprises

YF:

Yield factor

References

  • Barrett J, Scott A (2001) The ecological footprint: a metric for corporate sustainability. Corp Environ Strateg 8(4):316–325. https://doi.org/10.1016/j.sbspro.2014.02.495

    Article  Google Scholar 

  • Benedek A, Takácsné György K (2016) Examination of the corporate social responsibility to internal factors of corporate managers. Contemp Manage Res An Int J 1:69–86. Paper: 968-83-233-4093-5

    Google Scholar 

  • Butnariu A, Avasilcai S (2014) Research on the possibility to apply ecological footprint as environmental performance indicator for the textile industry. Proc Soc Behav Sci 124(20):344–350

    Article  Google Scholar 

  • Chambers N, Simmons C, Wackernagel M (2000) Sharing nature’s interest: ecological footprints as an indicator of sustainability. Routledge

    Google Scholar 

  • Collins A, Galli A, Patrizi N, Pulselli MF (2017) Learning and teaching sustainability: the contribution of ecological footprint calculators. J Clean Prod 174(10):1000–1010. https://doi.org/10.1016/j.jclepro.2017.11.024

    Article  Google Scholar 

  • Cseh B, Csuvár Á, Bánkuti Gy, Varga J (2018) Az alternatív gazdasági mutatók használata a közgazdaságtanban [Use of alternative economic indicators in the economy] In: Pintér G, Zsiborács H, Csányi Sz (eds) Arccal vagy háttal a jövőnek?: LX. Georgikon Napok, tanulmánykötet Keszthely, Hungary: Pannon Egyetem Georgikon Kar, pp 513–520

    Google Scholar 

  • Csutora M, Harangozó G (2019) Lessons learned from the last two decades of corporate carbon accounting. Zengwei, Yuan sustaining resources for the future. Nanjing University, Nanjing

    Google Scholar 

  • DEFRA (2018) Greenhouse gas reporting: conversion factors 2018. https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2018

  • Egedy T, Kovács Z, Kondor A Cs, Szigeti C, Szabó B (2017) Impacts of commuting on the spatial development and ecological footprint of the Budapest Metropolitan Region. In: 6th EUGEO Congress = 6ème Congrès EUGEO Brussels, Belgium. Société Royale Belge de Géographie, p 112

    Google Scholar 

  • Galli A, Iha K, Halle M, El Bilali H, Grunewald N, Eaton D, Capone R, Debs P, Bottalico F (2017) Mediterranean countries’ food consumption and sourcing patterns: an ecological footprint viewpoint. Sci Total Environ 578(1):383–391. https://doi.org/10.1016/j.scitotenv.2016.10.191

    Article  CAS  PubMed  Google Scholar 

  • Kocsis T (2010) “Hajózni muszáj!” A GDP, az ökológiai lábnyom és a szubjektív jóllét stratégiai összefüggései. Közgazdasági Szemle 57(6):536–554

    Google Scholar 

  • Kovács Z, Szigeti C, Egedy T, Szabó B, Kondor A (2017) Environmental impacts of urbanization – changes of the ecological footprint of commuting in the urban region of Budapest. Területi Statisztika 57(5):469–494. https://doi.org/10.15196/TS570501

    Article  Google Scholar 

  • KSH (2018) A kis- és középvállalkozások jellemzői, 2017. http://www.ksh.hu/apps/shop.kiadvany?p_kiadvany_id=1040238. Accessed 14 July 2019

  • Lenzen M, Murray J, Sack F, Wiedmann T (2007) Shared producer and consumer responsibility – theory and practice. Ecol Econ 61(1):27–42. https://doi.org/10.1016/j.ecolecon.2006.05.018

    Article  Google Scholar 

  • Lin D, Hanscom L, Martindill J, Borucke M, Cohen L, Galli A, Lazarus E, Zokai G, Iha K, Eaton D, Wackernagel M (2018) Working guidebook to the national footprint accounts. Global Footprint Network, Oakland

    Google Scholar 

  • Meena RS, Lal R (2018) Legumes for soil health and sustainable management. Springer Singapore, Singapore, pp 541. ISBN 978-981-13-0253-4 (eBook), ISBN: 978-981-13-0252-7 (Hardcover). https://doi.org/10.1007/978-981-13-0253-4_10

  • Meena RS, Kumar V, Yadav GS, Mitran T (2018) Response and interaction of Bradyrhizobium japonicum and Arbuscular mycorrhizal fungi in the soybean rhizosphere: a review. Plant Growth Regul 84:207–223

    Article  CAS  Google Scholar 

  • Meena RS, Kumar S, Datta R, Lal R, Vijaykumar V, Brtnicky M, Sharma MP, Yadav GS, Jhariya MK, Jangir CK, Pathan SI, Dokulilova T, Pecina V, Marfo TD (2020a) Impact of agrochemicals on soil microbiota and management: a review. Land (MDPI) 9(2):34. https://doi.org/10.3390/land9020034

    Article  Google Scholar 

  • Meena RS, Lal R, Yadav GS (2020b) Long term impacts of topsoil depth and amendments on soil physical and hydrological properties of an Alfisol in Central Ohio, USA. Geoderma 363:1141164

    Article  Google Scholar 

  • Meena RS, Lal R, Yadav GS (2020c) Long-term impact of topsoil depth and amendments on carbon and nitrogen budgets in the surface layer of an Alfisol in Central Ohio. Catena 194:104752

    Article  CAS  Google Scholar 

  • Patterson M, McDonald GW, Hardy DJ (2017) Is there more in common than we think? Convergence of ecological footprinting, energy analysis, life cycle assessment and other methods of environmental accounting. Ecol Model 362:19–36. https://doi.org/10.1016/j.ecolmodel.2017.07.022

    Article  Google Scholar 

  • Schaltegger S, Zvezdov D, Günther E, Csutora M, Alvarez I (2015) Corporate carbon and climate change accounting: application, developments and issues. In: Schaltegger S, Zvezdov D, Alvarez Etxeberria I, Csutora M, Günther E (eds) Corporate carbon and climate accounting. Springer, Cham. https://doi.org/10.1007/978-3-319-27718-9_1

  • Stiglitz J, Sen A, Fitoussi JP (2009) Report by the Commission on the Measurement of Economic Performance and Social Progress. https://www.researchgate.net/publication/258260767_Report_of_the_Commission_on_the_Measurement_of_Economic_Performance_and_Social_Progress_CMEPSP/stats. Accessed 7 Apr 2020

  • Szigeti C, Borzán A (2014) If ecological footprint is not the answer, what is the question. In: Gömbös Cs, Kálmán J, Keserű BA (eds) Global and local issues from the aspects of law and economy: 9th Batthyány Summer School Proceedings Győr, Hungary. Universitas-Győr Nonprofit Kft

    Google Scholar 

  • Szigeti C, Harangozó G (2016) Érvényesek és megbízhatók-e az elektronikus vállalati szénlábnyom kalkulátorokkal számított eredmények? Lépések a fenntarthatóság felé 66:14–15

    Google Scholar 

  • Szigeti C, Harangozó G (2018) Vállalati szén-lábnyom elemzések gyakorlata. In: Dinya L, Baranyi A (eds) XVI. Nemzetközi Tudományos Napok: “Fenntarthatósági kihívások és válaszok” - A Tudományos Napok Publikációi, Gyöngyös, Hungary, EKE Líceum Kiadó

    Google Scholar 

  • Szigeti C, Tóth G (2015) Can the ecological price paid for economic growth be cut? Polgári Szemle: Gazdasági és társadalmi folyóirat 11(4–6):472–489

    Google Scholar 

  • Szigeti C, Tóth G, Szabó DR (2016) The change of the ecological footprint’s intensity of national economies from the perspective of a decade. In: Gubáňová M (ed) Legal, economic, managerial and environmental aspects of performance competencies by local authorities: international scientific correspondence conference. Slovak University of Agriculture, Nitra, Slovakia

    Google Scholar 

  • Van den Bergh CJCM, Grazi F (2014) Ecological footprint policy? Land use as an environmental indicator. J Ind Ecol 18(1):10–19. https://doi.org/10.1111/jiec.12045

    Article  Google Scholar 

  • Vetőné Mózner ZS (2014) Sustainability and consumption structure: environmental impacts of food consumption clusters. A case study for Hungary. Int J Consum Stud 38(5):529–539. https://doi.org/10.1111/ijcs.12130

    Article  Google Scholar 

  • Wackernagel M, Beyers B (2019) Ecological footprint – managing our biocapacity budget. New Society Publishers, Gabriola Island BC, Canada, ISBN 978-086-571-911-8

    Google Scholar 

  • Wackernagel M, Rees W (1996) Our ecological footprint. Reducing Human Impact on the Earth New Society Publishers, Gabriola Island BC, Canada ISBN 1-55092-251-3

    Google Scholar 

  • Wiedmann T, Barrett J (2010) A review of the ecological footprint indicator – perceptions and methods. Sustainability 2(6):1645–1693. https://doi.org/10.3390/su2061645

    Article  Google Scholar 

  • Zilahy G (2017) Environmental management systems - history and new tendencies. In: Scott AE (ed) Reference module in earth systems and environmental sciences. Elsevier, Amsterdam, pp 23–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Á. Szennay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Szigeti, C., Szennay, Á., Lisányi Endréné Beke, J., Polák-Weldon, J.R., Radácsi, L. (2021). Challenges of Corporate Ecological Footprint Calculations in the SME Sector in Hungary: Case Study Evidence from Six Hungarian Small Enterprises. In: Banerjee, A., Meena, R.S., Jhariya, M.K., Yadav, D.K. (eds) Agroecological Footprints Management for Sustainable Food System. Springer, Singapore. https://doi.org/10.1007/978-981-15-9496-0_11

Download citation

Publish with us

Policies and ethics