Skip to main content

Application of Radiation for the Management of Mosquito Vectors

  • Chapter
  • First Online:
Molecular Identification of Mosquito Vectors and Their Management

Abstract

Eradication and elimination of mosquito vector populations have been proved to be the most effective option to reduce the transmission of vector-borne diseases. The vector control with the help of chemical strategies all over the world is complicated and ineffectual with many disadvantages like environmental pollution, effect on non-target species, and resistance selection obstructing its efficacy. Therefore, there is an urgent need for identification of an upgraded plan of action to control those which could be efficacious for growing insecticide and drug resistance. The main focus of this chapter is to revisit control tactics based on the genetics of mosquito population and the current molecular biological technique and field tests that assure to prevent diseases caused by vector through radiation induced sterilization. In most of the research works on genetic control of mosquito vector, both X-rays and gamma rays have been used but there is insufficient information about the use of electron beams. Radioisotope Cobalt-60 is regularly used because it is more easily contrived than Caesium-137 for gamma rays. As the handling of pupae is easier than handling the delicate adult mosquitoes, the use of mosquito pupae seems to be the ideal stage for irradiation. Also, the effect of radiation on different biological parameters of mosquito vectors, sterility caused by radiation is discussed in this chapter. The controls of mosquito’s trials have failed to attain their goal because of the great reproductive capacity and genomic flexibility of mosquitoes; therefore, there is an urgent need of developing a stable technique for the control of mosquito vector is the call of the hour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Malek AA, Tantawy AO, Wakid AM (1966) Studies on the eradication of Anopheles pharoensis Theobald by the sterile male technique using cobalt-60. I. Biological effect of gamma radiation on different developmental stages. J Econ Entomol 59:672–678

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Malek AA, Tantawy AO, Wakid AM (1967) Studies on the eradication of Anopheles pharoensis Theobald by the sterile-male technique using Cobalt-60. III. Determination of the sterile dose and its biological effects on different characters related to “fitness” components. J Econ Entomol 60:20–23

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Malek AA, Wakid AM, Tantawy AO, El Gazzar LM (1975) Studies on factors influencing the induction of sterility in Anopheles pharoensis Theobald by gamma radiation. In: The use of isotopes and pesticides in pest control, pp 161–174

    Google Scholar 

  • Akter H, Khan SA (2013) Sensitivity of immature stages of dengue causing mosquito, Aedes aegypti (L.) to gamma radiation. J Entomol 11:56–67

    Article  Google Scholar 

  • Ali SR, Rozeboom LE (1972) Observations on sterilization of Anopheles (C.) albimanus Wiedemann by x-irradiation. Mosq News 32:574–579

    Google Scholar 

  • Alphey L, Andreasen MH (2002) Dominant lethality and insect population control. Mol Biochem Parasitol 121:173–178

    Article  CAS  PubMed  Google Scholar 

  • Alphey L, Beard B, Billingsley P, Coetzee M et al (2002) Malaria control with genetically modified vectors. Science 298:119–121

    Article  CAS  PubMed  Google Scholar 

  • Alphey L, Benedict M, Bellini R et al (2010) Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoonotic Dis 10:295–311

    Article  PubMed  PubMed Central  Google Scholar 

  • Atyame CM, Pasteur N, Dumas E et al (2011) Cytoplasmic incompatibility as a means of controlling Culex pipiens quinquefasciatus mosquito in the islands of the South-Western Indian Ocean. PLoS Negl Trop Dis 5:e1440

    Article  PubMed  PubMed Central  Google Scholar 

  • Baeshen R, Ekechukwu NE, Toure M, Paton D, Coulibaly M, Traoré SF et al (2014) Differential effects of inbreeding and selection on male reproductive phenotype associated with the colonization and laboratory maintenance of Anopheles gambiae. Malar J 13:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Bakri A, Mehta K, Lance DR (2005) Sterilizing insects with ionizing radiation. In: Dyck VA, Robinson AS (eds) Sterile insect technique. Springer, Amsterdam, pp 233–268

    Chapter  Google Scholar 

  • Barik TK, Raghavendra K, Goswami A (2012) Silica nanoparticle: a potential new insecticide for mosquito vector control. Parasitol Res 111:1075–1083

    Article  PubMed  Google Scholar 

  • Bellini R, Calvitti M, Medici A, Carrieri M, Celli G, Maini S (2007) Use of the sterile insect technique against Aedes albopictus in Italy: Þrst results of a pilot trial. In: Vreysen MIB, Robinson AS, Hendrichs J (eds) Area-wide control of insect pests: from research to Þeld implementation. Springer, Dordrecht, pp 505–515

    Chapter  Google Scholar 

  • Benedict MQ, Robinson AS (2003) The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol 19:349–355

    Article  PubMed  Google Scholar 

  • Bhuyan KB, Barik TK (2016) Impact of high dose of gamma radiation on field collected Aedes aegypti. J Mosquito Res 6:1–6

    Google Scholar 

  • Burt A (2003) Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc Biol Sci 270:921–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bushland RC, Lindquist AW, Knipling EF (1955) Eradication of screw-Worms through release of sterilized males. Science 122:287–288

    Article  CAS  PubMed  Google Scholar 

  • Clements AN (1992) The biology of mosquitoes. Development, nutrition and reproduction volume 1. Chapman & Hall, London

    Google Scholar 

  • Craig GB Jr, Hickey WA, Vandehey RC (1960) An inherited male-producing factor in Aedes aegypti. Science 132:1887–1889

    Article  PubMed  Google Scholar 

  • Craig GB Jr, Vandehey RC, Hickey WA (1961) Genetic variability in populations of Aedes aegypti. Bull World Health Organ 24:527–539

    PubMed  PubMed Central  Google Scholar 

  • Curtis CF (1976) Radiation sterilization. In: Report on mosquito research, vol 1. Ross Institute of Tropical Hygiene, London, pp 76–31

    Google Scholar 

  • Dame DA, Curtis CF, Benedict MQ, Robinson AS, Knols BG (2009) Historical applications of induced sterilisation in field populations of mosquitoes. Malar J 8:S2

    Article  PubMed  PubMed Central  Google Scholar 

  • Dandalo LC, Kemp A, Koekemoer LL, Munhenga G (2017) Effect of ionising (gamma) radiation on female Anopheles arabiensis. Trans R Soc Trop Med H 111:38–40

    Article  CAS  Google Scholar 

  • Davis AN, Gahan JB, Weidhaas DE, Smith CN (1959) Exploratory studies on gamma radiation for the sterilization and control of Anopholes quadrimaculatus. J Econ Entomol 52:868–870

    Article  Google Scholar 

  • Davis S, Bax N, Grewe P (2001) Engineered under dominance allows efficient and economic introgression of traits into pest populations. J Theor Biol 212:83/98

    Article  Google Scholar 

  • Dhiman S, Baruah I, Singh L (2010) Military malaria in northeast region of India. Def Sci J 60:213–218

    Article  Google Scholar 

  • Dobson SL, Fox CW, Jiggins FM (2002) The effect of Wolbachia-induced cytoplasmic incompatibility on host population size in natural and manipulated systems. Proc R Soc London B Biol Sci 269:437–445

    Article  Google Scholar 

  • Dorta DM, Vasuki V, Rajavel A (1993) Evaluation of organophosphorus and synthetic pyrethroid insecticides against six vector mosquito species. Rev Saúde Pública 27:391–397

    Article  CAS  PubMed  Google Scholar 

  • Dumont Y, Chiroleu F (2010) Vector control for the chikungunya disease. Math Biosc Eng 7(2):313–345

    Article  Google Scholar 

  • Dyck VA, Hendrichs J, Robinson AS (2005) Sterile insect technique: principles and practice in area-wide integrated pest management. Springer, Amsterdam, p 801

    Book  Google Scholar 

  • Ernawan B, Tambunan USF, Sugoro I, Sasmita HI (2017) Effects of gamma irradiation dose-rate on sterile male Aedes aegypti. AIP Conf Proc 1854:020010

    Article  Google Scholar 

  • Franz AW, Sanchez-Vargas I, Adelman ZN, Blair CD, Beaty BJ et al (2006) Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proc Natl Acad Sci U S 103:4198–4203

    Article  CAS  Google Scholar 

  • Hahn MW, Nuzhdin SV (2004) The fixation of malaria refractoriness in mosquitoes. Curr Biol 14:R264–R265

    Article  CAS  PubMed  Google Scholar 

  • Helinski MEH, Parker AG, Knols BGJ (2006) Radiation induced sterility for pupal and adult stages of the malaria mosquito Anopheles arabiensis. Malar J 66:13–20

    Google Scholar 

  • Helinski ME, Parker AG, Knols BG (2009) Radiation biology of mosquitoes. Malar J 8:S6

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Magori K, Lloyd AL, Gould F (2007) Introducing desirable transgenes into insect populations using Y-linked meiotic drive a theoretical assessment. Evolution 61:717–726

    Article  PubMed  Google Scholar 

  • IAEA (2008) Model business plan for a sterile insect production facility. IAEA, Vienna

    Google Scholar 

  • Ibrahim HAM, Sawires SG, Hamza AF (2018) Morphological characterization and distribution of antennal sensilla of irradiated female mosquito, Culex pipiens (Diptera: Culicidae) with gamma radiation. J Rad Res Appl Sci 11:291–298

    Google Scholar 

  • Ito J, Ghosh A, Moreira LA, Wimmer EA, Jacobs-Lorena M (2002) Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature 417:452–455

    Article  CAS  PubMed  Google Scholar 

  • James AA (2005) Gene drive systems in mosquitoes: rules of the road. Trends Parasitol 21:64–67

    Article  CAS  PubMed  Google Scholar 

  • Jayaraman KS (1997) Consortium aims to revive sterile-mosquito project. Nature 389:6

    PubMed  Google Scholar 

  • Khan GZ, Salman M, Khan I, Zeb A, Shah JL, Hussain A, Akbar I, Bibi A, Anwar S, Badshah T, Saifullah SAZ (2015) Assessment of irradiation doses for sterility of vector mosquito and subsequent mating compatibility with wild females. J Entomol Zoolog Stud 3:138–141

    Google Scholar 

  • Kim W, Koo H, Richman AM et al (2014) Ectopic expression of a cecropin transgene in the human malaria vector mosquito Anopheles gambiae (Diptera: Culicidae): effects on susceptibility to plasmodium. J Med Entomol 41:447–455

    Article  Google Scholar 

  • Klassen W, Curtis CF (2005) History of sterile insect technique. In: Dyck VA, Robinson AS (eds) Sterile Insect Technique. Springer, Berlin, pp 3–36

    Chapter  Google Scholar 

  • La Chance LE (1967) The induction of dominant lethal mutations in insects by ionizing radiation and chemicals-as related to the sterile male technique of insect control. In: Wright JW, Pal R (eds) Genetics of insect vectors of disease. Elsevier, Amsterdam, pp 617–650

    Google Scholar 

  • Machi AR, Mayne RR, Gava MA, Arthur PB, Arthur V (2019) Gamma radiation sterilization dose of adult males in asian tiger mosquito pupae. Insects 10:101

    Article  Google Scholar 

  • Marec F, Neven L, Robinson AS et al (2005) Development of genetic sexing strains in Lepidoptera: from traditional to transgenic approaches. J Econ Entomol 98:248–259

    Article  PubMed  Google Scholar 

  • McMeniman CJ, Lane RV, Cass BN, Fong AW, Sidhu M et al (2009) Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323:141–144

    Article  CAS  PubMed  Google Scholar 

  • Minks AK (1971) Decreased sex pheromone production in an in-bred stock of the summer fruit tortrix moth Adoxophyes orana. Entomol Exp App 14:361–364

    Article  Google Scholar 

  • Monaghan P, Metcalfe NB, Torres R (2009) Oxidative stress as a mediator of life history trade-offs: mechanisms. Measurements and interpretation. Ecol Lett 12:75–92

    Article  PubMed  Google Scholar 

  • Mori A, Chadee DD, Graham DH, Severson DW (2004) Reinvestigation of an endogenous meiotic drive system in the mosquito Aedes aegypti (Diptera: Culicidae). J Med Entomol 41:1027–1033

    Article  PubMed  Google Scholar 

  • Nasci RS (1986) The size of emerging and host-seeking Aedes aegypti and the relation of size to blood-feeding success in the field. J Am Mosq Control Assoc 2:61–62

    CAS  PubMed  Google Scholar 

  • O’Brochta DA, Sethuraman N, Wilson R, Hice RH, Pinkerton AC, Levesque CS, Bideshi DK, Jasinskiene N, Coates CJ, James AA, Lehane MJ, Atkinson PW (2003) Gene vector and transposable element behavior in mosquitoes. J Exp Biol 206:3823–3834

    Article  PubMed  CAS  Google Scholar 

  • Oliva CF, Jacquet M, Gilles J, Lemperiere G, Maquart PO, Quilici S et al (2012) The sterile insect technique for controlling populations of Aedes albopictus (Diptera: Culicidae) on Reunion Island: mating vigour of sterilized males. PLoS One 7:e49414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pates H, Curtis C (2005) Mosquito behavior and vector control. Annu Rev Entomol 50:53–70

    Article  CAS  PubMed  Google Scholar 

  • Poda SB, Guissou E, Maïga H, Bimbile-Somda SN, Gilles J, Rayaisse JB, Lefèvre T, Roux O, Dabiré RK (2018) Impact of irradiation on the reproductive traits of field and laboratory An. arabiensis mosquitoes. Parasit Vectors 11:641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasgon JL, Scott TW (2003) Wolbachia and cytoplasmic incompatibility in the California Culex pipiens mosquito species complex: parameter estimates and infection dynamics in natural populations. Genetics 165:2029–2038

    PubMed  PubMed Central  Google Scholar 

  • Rasgon JL, Gould F (2005) Transposable element insertion location bias and the dynamics of gene drive in mosquito populations. Insect Mol Biol 14:493–500

    Article  CAS  PubMed  Google Scholar 

  • Rozendal JA (1997) Vector control: methods for use by individuals and communities. World Health Organization. AITBS Publisher and Distributors (Regd.), Delhi

    Google Scholar 

  • Santos NDL, Napoleão TH, Benevides CAA, lbuquerque LP, Pontual EV, Oliveira APS, Coelho LCBB, Navarro DMAF, Paiva PMG (2018) Effect of gamma irradiation of Moringa oleifera seed lectin on its larvicidal, ovicidal, and oviposition-stimulant activities against Aedes aegypti. S Afr J Bot 129:3–8

    Article  CAS  Google Scholar 

  • Schliekelman P, Gould F (2000) Pest control by the introduction of a conditional lethal trait on multiple loci: potential, limitations, and optimal strategies. J Econ Entomol 93:1543–1565

    Article  CAS  PubMed  Google Scholar 

  • Sharma VP, Razdan RK, Ansari MA (1978) Anopheles stephensi: effect of gamma-radiation and chemosterilants on the fertility and fitness of males for sterile male releases. J Econ Entomol 71:449–452

    Article  CAS  PubMed  Google Scholar 

  • Shetty V, Shetty JN, Harini BP, Ananthanayarana SR, Jha SK, Chaubey RC (2016) Effect of gamma radiation on life history traits of Aedes aegypti (L.). Parasit Epidemiol Control 1:26–35

    Article  Google Scholar 

  • Singhal RK, Ajay K, Usha N, Reddy AV (2009) Evaluation of doses from ionizing radiation to non-human species at Trombay, Mumbai, India. Radiat Prot Dosim 133:214–222

    Article  CAS  Google Scholar 

  • Sinkins SP, Godfray HC (2004) Use of Wolbachia to drive nuclear transgenes through insect populations. Proc Biol Sci 271:1421–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutiningsih D, Rahayu A, Puspitasari D (2017) The level of egg sterility and mosquitoes age after the release of sterile insect technique (SIT) in Ngaliyan Semarang. J Trop Life Sci 7:133–137

    Article  Google Scholar 

  • Tantawy AO, Abdel-Malek AA, Wakid AW (1967) Studies on the eradication of Anopheles pharoensis Theobald by the sterile-male technique using Cobalt-60. II. Induced dominant lethals in the immature stages. J Econ Entomol 59:1392–1394

    Article  Google Scholar 

  • UNSCEAR 2008 (2011) Report to the general assembly with scientific annexes. sources and effects of ionizing radiation, vol II. United Nations, New York

    Google Scholar 

  • Vaz AFM, Souza MP, Medeiros PL, Melo AMMA, Silva-Lucca RA, Santana LA, Oliva MLV, Perez KR, Cucciova IM, Correia MTS (2013a) Low-dose gamma irradiation of food protein increases its allergenicity in a chronic oral challenge. Food Chem Toxicol 51:46–52

    Article  CAS  PubMed  Google Scholar 

  • Vaz AFM, Souza MP, Vieira LD, Aguiar JS, Silva TG, Medeiros PL, Melo AMMA, Silva-Lucca RA, Santana LA, Oliva MLV, Perez KR, Cuccovia IM, Coelho LCBB, Correia MTS (2013b) High doses of gamma radiation suppress allergic effect induced by food lectin. Radiat Phys Chem 85:218–226

    Article  CAS  Google Scholar 

  • Weidhaas DE, Schmidt CH, Chamberlain WF (1962) Radioisotopes and radiation entomology. IAEA, Vienn, pp 257–265

    Google Scholar 

  • WHO (2019) Zika epidemiology update. https://www.who.int/emergencies/diseases/zika/epidemiology-update/en/

  • Wilke ABB, Nimmo DD, OSt J, Kojin BB, Capurro ML, Marrelli MT (2009) Mini-review: genetic enhancements to the sterile insect technique to control mosquito populations. As Pac J Mol Biol Biotechnol 17:65–74

    Google Scholar 

  • Wilke ABB, Marrelli MT (2012) Genetic control of mosquitoes: population suppression strategies. Rev Inst Med Trip Sao Paulo 54:287–292

    Article  Google Scholar 

  • Windbichler N, Papathanos PA, Catteruccia F, Ranson H, Burt A, Crisanti A (2007) Homing endonuclease mediated gene targeting in Anopheles gambiae cells and embryos. Nucleic Acids Res 35:5922–5933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav K, Dhiman S, Baruah I, Singh L (2010b) Effect of gamma radiation on survival and fertility of male Anopheles stephensi Liston, irradiated as Pharate adults. Defence research laboratory, Tezpur. India J Ecobiotechnol 4:6–10

    Google Scholar 

  • Yadav K, Baruah I, Goswami D (2010a) Efficacy of Bacillus sphaericus strain isolated from north east region of India as potential mosquito larvicide. J Cell Tissue Res 10:2251–2256

    Google Scholar 

  • Zhang D, Zheng X, Xi Z, Bourtzis K, Gilles JR (2015) Combining the sterile insect technique with the incompatible insect technique: I. impact of Wolbachia infection on the fitness of triple and double-infected strains of Aedes albopictus. PLoS One 10:e0121126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhuyan, K.B., Sahu, A.A., Achari, T.S., Barik, T.K. (2020). Application of Radiation for the Management of Mosquito Vectors. In: Barik, T.K. (eds) Molecular Identification of Mosquito Vectors and Their Management. Springer, Singapore. https://doi.org/10.1007/978-981-15-9456-4_10

Download citation

Publish with us

Policies and ethics