Skip to main content

An Efficient and Revocable Auditing Scheme for the Internet of Things

  • Conference paper
  • First Online:
Security and Privacy in Social Networks and Big Data (SocialSec 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1298))

Abstract

With the rapid development and popularization of Internet of Things (IoT) technology, the problem of limited data storage and computing power of smart devices is becoming more and more obvious, and cloud computing can provide computing and storage services. IoT data is outsourced in cloud storage, and how to ensure the integrity of the data is worth studying. A Certificateless Provable Data Possession (CL-PDP) scheme for the Internet of Things environment is proposed. To solve the problem of weak user computing power and malicious third-party problems, a KTC fog alliance structure model is designed. The user revocation by the cloud service provider reduces the computational burden of the KGC. Finally, through theoretical analysis and experimental verification, it shows that the scheme has less calculation, revocation overhead and higher credibility than other schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu, C., Sheng, Z., Leung, V.C.M., Shu, L., Yang, L.T.: Toward offering more useful data reliably to mobile cloud from wireless sensor network. IEEE Trans. Emerg. Topics Comput. 3, 84–94 (2015)

    Article  Google Scholar 

  2. Ateniese, G., Burns, R., Curtmola, R., et al.: Provable data possession at untrusted stores. In Proceedings of the 14th ACM Conference Computer Commununication Security (CCS 2007), Alexandria, Virginia, USA, pp. 598–609 (2007)

    Google Scholar 

  3. Ateniese G., Pietro R.D., Mancini, L.V, et al.: Scalable and efficient provable data possession. In: Proceeding of the 4th International Conference on Security Privacy Communincation Networks. (SECURECOMM), NY, USA, pp. 1–10 (2018)

    Google Scholar 

  4. Zhao, J., Xu, C., Li, F., et al.: Identity-based public verification with privacy-preserving for data storage security in cloud computing. IEICE Trans. Fund. Elect. Commun. Comput. Sci. 96(12), 2709–2716 (2013)

    Article  Google Scholar 

  5. Wang, B., Li, B., Li, H., Li, F.: Certificateless public auditing for data integrity in the cloud. In: Proceedings 2013 IEEE Conference Commun. Networks Security, pp. 136–144,(2013)

    Google Scholar 

  6. Tian, J., Chang, F.: Trusted Cloud Platform management model based on Tpm alliance. Trans. Commun. 37(2), 1–10 (2016)

    MathSciNet  Google Scholar 

  7. Tian, J., Li, T.: Data integrity verification model based on TPA cloud alliance. Trans. Commun. 39(8), 113–124 (2018)

    Google Scholar 

  8. Zhang ,Y., Yu, J., Hao, R., et al.: Enabling efficient user revocation in identity-based cloud storage auditing for shared big data. IEEE Trans. Dependable Secur. Comput. (99), 1–1,(2018)

    Google Scholar 

  9. Li, J., Yan, H., Zhang, Y.: Certificateless public integrity checking of group shared data on cloud storage. IEEE Trans. Services Comput. 1–1 (2018)https://doi.org/10.1109/tsc.2018.2789893

  10. He, D.: Certificateless provable data possession scheme for cloud-based smart grid data management systems. IEEE Trans. Ind. Informat. 14(3), 1232–1241 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Rui-Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jun-Feng, T., Rui-Fang, G. (2020). An Efficient and Revocable Auditing Scheme for the Internet of Things. In: Xiang, Y., Liu, Z., Li, J. (eds) Security and Privacy in Social Networks and Big Data. SocialSec 2020. Communications in Computer and Information Science, vol 1298. Springer, Singapore. https://doi.org/10.1007/978-981-15-9031-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9031-3_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9030-6

  • Online ISBN: 978-981-15-9031-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics