Skip to main content

Applications to Biofuel Cells and Bioreactors

  • Chapter
  • First Online:
Enzymatic Bioelectrocatalysis
  • 358 Accesses

Abstract

This chapter starts by introducing several types of biofuel cells as an application of bioelectrocatalysis with the advantages and disadvantages. Challenging issues and outlook are also described. Photo-driven bioanodes and bio-solar cell are also introduced. Bioelectrochemical reactors are proposed as reverse reactions of biofuel cells. One of brilliant points of bioelectrocatalytic systems is the property that the systems can catalyze redox reactions bidirectionally and reversibly. The significance of this matter is discussed in view of hydrogen society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yahiro AT, Lee SM, Kimble DO (1964) Bioelectrochemistry: I. Enzyme utilizing bio-fuel cell studies. Biochim Biophys Acta 88:375–383

    Google Scholar 

  2. Xiao X, Xia H, Wu R, Bai L, Yan L, Magner E, Cosnier S, Lojou E, Zhu Z, Liu A (2019) Tackling the challenges of enzymatic (bio)fuel cells. Chem Rev 119:9509–9558

    Article  CAS  PubMed  Google Scholar 

  3. Zhao C-E, Gai P, Song R, Chen Y, Zhang J, Zhu J-J (2017) Nanostructured material-based biofuel cells: recent advances and future prospects. Chem Soc Rev 46:1545–1564

    Article  CAS  PubMed  Google Scholar 

  4. Cosnier S, Gross AJ, Le Goff A, Holzinger M (2016) Recent advances on enzymatic glucose/oxygen and hydrogen/oxygen biofuel cells: achievements and limitations. J Power Sources 325:252–263

    Article  CAS  Google Scholar 

  5. Mazurenko I, Wang X, de Poulpiquet A, Lojou E (2017) H2/O2 Enzymatic fuel cells: from proof-of-concept to powerful devices. Sustain Energy Fuels 1:1475–1501

    Article  CAS  Google Scholar 

  6. Mazurenko I, de Poulpiquet A, Lojou E (2017) Recent developments in high surface area bioelectrodes for enzymatic fuel cells. Curr Opin Electrochem 5:74–84

    Article  CAS  Google Scholar 

  7. Wen D, Eychmüller A (2016) Enzymatic biofuel cells on porous nanostructures. Small 12:4649–4661

    Article  CAS  PubMed  Google Scholar 

  8. Rasmussen M, Abdellaoui S, Minteer SD (2015) Enzymatic biofuel cells: 30 years of critical advancements. Biosens Bioelectron 76:91–102

    Article  PubMed  CAS  Google Scholar 

  9. Cosnier S, Holzinger M, Le Goff A (2014) Recent advances in carbon nanotube-based enzymatic fuel cells. Front Bioeng Biotechnol 2:45

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sakai K, Kitazumi Y, Shirai O, Takagi K, Kano K (2017) High-Power formate/dioxygen biofuel cell based on mediated electron transfer type bioelectrocatalysis. ACS Catal 7:5668–5673

    Article  CAS  Google Scholar 

  11. Sakai H, Nakagawa T, Mita H, Kumita H, Tokita Y (2010) Evolution of Sony's biofuel cell. In: 217th electrochemical society meeting. Vancouver, Canada, Abstract#396

    Google Scholar 

  12. Sakai H, Nakagawa T, Mita H, Matsumoto R, Sugiyama T, Kumita H, Tokita Y, Hatazawa T (2009) Sony’s biofuel cell. ECS Trans 16:9–15

    Article  CAS  Google Scholar 

  13. Gai P, Ji Y, Chen Y, Zhu C, Zhang J, Zhu J-J (2015) A Nitrogen-doped graphene/gold nanoparticle/formate dehydrogenase bioanode for high power output membrane-less formic acid/O2 biofuel cells. Analyst 140:1822–1826

    Article  CAS  PubMed  Google Scholar 

  14. Sakai H, Nakagawa T, Tokita Y, Hatazawa T, Ikeda T, Tsujimura S, Kano K (2009) A high-power glucose/oxygen biofuel cell operating under quiescent conditions. Energy Environ Sci 2:133–138

    Article  CAS  Google Scholar 

  15. Sakai H, Mita H, Sugiyama T, Tokita Y, Shirai O, Kano K (2014) Construction of a multi-stacked sheet-type enzymatic biofuel cell. Electrochemistry 82:156–161

    Article  CAS  Google Scholar 

  16. Soukharev V, Mano N, Heller A (2004) A four-electron O2-electroreduction biocatalyst superior to platinum and a biofuel cell operating at 0.88 V. J Am Chem Soc 126:8368–8369

    Google Scholar 

  17. Reuillard B, Abreu C, Lalaoui N, Le Goff A, Holzinger M, Ondel O, Buret F, Cosnier S (2015) One-year stability for a glucose/oxygen biofuel cell combined with pH reactivation of the laccase/carbon nanotube biocathode. Bioelectrochemistry 106:73–76

    Article  CAS  PubMed  Google Scholar 

  18. Shitanda I, Kato S, Hoshi Y, Itagaki M, Tsujimura S (2013) Flexible and high-performance paper-based biofuel cells using printed porous carbon electrodes. Chem Commun 49:1110–1112

    Article  CAS  Google Scholar 

  19. Sahin S, Cai R, Milton RD, Abdellaou S, Macazo FC, Mintee SD (2018) Molybdenum-dependent formate dehydrogenase for formate bioelectrocatalysis in a formate/O2 enzymatic fuel cell. J Electrochem Soc 165:H109–H113

    Article  CAS  Google Scholar 

  20. So K, Kitazumi Y, Shirai O, Nishikawa K, Higuchi Y, Kano K (2016) Direct electron transfer-type dual gas diffusion H2/O2 biofuel cells. J Mater Chem A 4:8742–8749

    Article  CAS  Google Scholar 

  21. Xia H, So K, Kitazumi Y, Shirai O, Nishikawa K, Higuchi Y, Kano K (2016) Dual gas-diffusion membrane- and mediatorless dihydrogen/air-breathing biofuel cell operating at room temperature. J Power Sources 335:105–112

    Article  CAS  Google Scholar 

  22. So K, Kawai S, Hamano Y, Kitazumi Y, Shirai O, Hibi M, Ogawa J, Kano K (2014) Improvement of a direct electron transfer-type fructose/dioxygen biofuel cell with a substrate-modified biocathode. Phys Chem Chem Phys 16:4823–4829

    Article  CAS  PubMed  Google Scholar 

  23. Miyake T, Yoshino S, Yamada T, Hata K, Nishizawa M (2011) Self-regulating enzyme-nanotube ensemble films and their application as flexible electrodes for biofuel cells. J Am Chem Soc 133:5129–5134

    Article  CAS  PubMed  Google Scholar 

  24. de Poulpiquet A, Ciaccafava A, Gadiou R, Gounel S, Giudici-Orticoni MT, Mano N, Lojou E (2014) Design of a H2/O2 biofuel cell based on thermostable enzymes. Electrochem Commun 42:72–74

    Article  CAS  Google Scholar 

  25. Murata K, Kajiya K, Nakamura N, Ohno H (2009) Direct Electrochemistry of bilirubin oxidase on three-dimensional gold nanoparticle electrodes and its application in a biofuel cell. Energy Environ Sci 2:1280–1285

    Article  CAS  Google Scholar 

  26. Kamitaka Y, Tsujimura S, Setoyama N, Kajino T, Kano K (2007) Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis. Phys Chem Chem Phys 9:1793–1801

    Article  CAS  PubMed  Google Scholar 

  27. Lalaoui N, de Poulpiquet A, Haddad R, Le Goff A, Holzinger M, Gounel S, Mermoux M, Infossi P, Mano N, Lojou E, Cosnier S (2015) A membraneless air-breathing hydrogen biofuel cell based on direct wiring of thermostable enzymes on carbon nanotube electrodes. Chem Commun 51:7447–7450

    Article  CAS  Google Scholar 

  28. Xu L, Armstrong FA (2013) Optimizing the power of enzyme-based membrane-less hydrogen fuel cells for hydrogen-rich H2–air mixtures. Energy Environ Sci 6:2166–2171

    Article  CAS  Google Scholar 

  29. Wait AF, Parkin A, Morley GM, dos Santos L, Armstrong FA (2010) Characteristics of enzyme-based hydrogen fuel cells using an oxygen-tolerant hydrogenase as the anodic catalyst. J Phys Chem C 114:12003–12009

    Article  CAS  Google Scholar 

  30. Sakai H, Nakagawa T, Mita H, Matsumoto R, Sugiyama T, Kumita H, Tokita Y, Hatazaw T (2009) A high-power glucose/oxygen biofuel cell operating under quiescent conditions. ECS Trans 16:9–15

    Article  CAS  Google Scholar 

  31. Zhu Z, Wang Y, Minteer SD, Percival Zhang YH (2011) Maltodextrin-powered enzymatic fuel cell through a non-natural enzymatic pathway. J Power Sources 196:7505–7509

    Google Scholar 

  32. So K, Kitazumi Y, Shirai O, Kurita K, Nishihara H, Higuchi Y, Kano K (2014) Kinetic analysis of inactivation and enzyme reaction of oxygen-tolerant [NiFe]-hydrogenase at direct electron-transfer bioanode. Bull Chem Soc Jpn 87:1177–1185

    Article  CAS  Google Scholar 

  33. Fourmond V, Stapf S, Li H, Buesen D, Birrell J, Rüdiger O, Lubitz W, Schuhmann W, Plumeré N, Léger C (2015) Mechanism of protection of catalysts supported in redox hydrogel films. J Am Chem Soc 137:5494–5505

    Article  CAS  PubMed  Google Scholar 

  34. Plumeré N, Rüdiger O, Oughli AA, Williams R, Vivekananthan J, Pöller S, Schuhmann W, Lubitz W (2014) A redox hydrogel protects hydrogenase from high-potential deactivation and oxygen damage. Nat Chem 6:822–827

    Article  PubMed  CAS  Google Scholar 

  35. So K, Sakai K, Kano K (2017) Gas diffusion bioelectrodes. Curr Opin Electrochem 5:173–182

    Article  CAS  Google Scholar 

  36. Kitazumi Y, Kano K, Bioelectrochemical and reversible interconversion in the proton/hydrogen and carbon dioxide/formate redox systems and its significance in future energy systems. In: Shiii M, Wakai S (eds) Electron-based bioscience and biotechnology, Chap. 7, Spring, Berlin, in press

    Google Scholar 

  37. Enthaler S, von Langermann J, Schmidt T (2010) Carbon dioxide and formic acid—the couple for environmental-friendly hydrogen storage? Energy Environ Sci 3:1207–1217

    Article  CAS  Google Scholar 

  38. Asefa T, Koh K, Yoon CW (2019) CO2-mediated H2 storage-release with nanostructured catalysis: recent progress, challenges, and perspectives. Adv Energy Mater 9:1901158

    Article  CAS  Google Scholar 

  39. Deng L, Shang L, Wen D, Zhai J, Dong S (2010) A Membraneless biofuel cell powered by ethanol and alcoholic beverage. Biosens Bioelectron 26:70–73

    Article  CAS  PubMed  Google Scholar 

  40. Palmore GTR, Bertschy H, Bergens SH, Whitesides GM (1998) A methanol/dioxygen biofuel cell that uses NAD(+)-dependent dehydrogenases as catalysts: application of an electro-enzymatic method to regenerate nicotinamide adenine dinucleotide at low overpotentials. J Electroanal Chem 443:155–161

    Article  CAS  Google Scholar 

  41. Sakai H, Nakagawa T, Mita H, Kumita H, Tokita Y (2010) Evolution of Sony’s biofuel cell. In: 217th ECS Meeting, p 396

    Google Scholar 

  42. Zhu Z, Ma C, Percival Zhang YH (2018) Co-utilization of mixed sugars in an enzymatic fuel cell based on an in vitro enzymatic pathway. Electrochim Acta 263:184–191

    Google Scholar 

  43. Macazo FC, Minteer SD (2017) Enzyme cascades in biofuel cells. Curr Opin Electrochem 5:114–120

    Article  CAS  Google Scholar 

  44. Sugimoto Y, So K, Xia H, Kano K (2018) Orientation-oriented adsorption and immobilization of redox enzymes for electrochemical communication with electrodes. In: Wandelt K (ed) Encyclopedia of interfacial chemistry: surface science and electrochemistry. Elsevier, Amsterdam, pp 403–421

    Google Scholar 

  45. Hitaishi V, Clement R, Bourassin N, Baaden M, de Poulpiquet A, Sacquin-Mora S, Ciaccafava A, Lojou E (2018) Controlling redox enzyme orientation at planar electrodes. Catalysts 8:192

    Article  CAS  Google Scholar 

  46. Sugimoto Y, Kitazumi Y, Shirai O, Kano K (2017) Effects of mesoporous structures on direct electron transfer-type bioelectrocatalysis: facts and simulation on a three-dimensional model of random orientation of enzymes. Electrochemistry 85:82–87

    Article  CAS  Google Scholar 

  47. Sugimoto Y, Takeuchi R, Kitazumi Y, Shirai O, Kano K (2016) Significance of mesoporous electrodes for noncatalytic faradaic process of randomly oriented redox proteins. J Phys Chem C 120:26270–26277

    Article  CAS  Google Scholar 

  48. Kano K, Ikeda T (2000) Fundamentals and practices of mediated bioelectrocatalysis. Anal Sci 16:1013–1021

    Article  CAS  Google Scholar 

  49. Hanashi T, Yamazaki T, Tsugawa W, Ferri S, Nakayama D, Tomiyama M, Ikebukuro K, Sode K (2009) BioCapacitor—a novel category of biosensor. Biosens Bioelectron 24:1837–1842

    Article  CAS  PubMed  Google Scholar 

  50. Pankratov D, Blum Z, Shleev S (2014) Hybrid electric power biodevices. ChemElectroChem 1:1798–1807

    Article  CAS  Google Scholar 

  51. Sode K, Yamazaki T, Lee I, Hanashi T, Tsugawa W (2016) BioCapacitor: a novel principle for biosensors. Biosens Bioelectron 76:20–28

    Article  CAS  PubMed  Google Scholar 

  52. Shleev S, González-Arribas E, Falk M (2017) Biosupercapacitors. Curr Opin Electrochem 5:226–233

    Article  CAS  Google Scholar 

  53. Pankratov D, Conzuelo F, Pinyou P, Alsaoub S, Schuhmann W, Shleev SA (2016) Nernstian Biosupercapacitor. Angew Chem Int Ed 55:15434–15438

    Google Scholar 

  54. Haehnel W, Hochheimer HJ (1979) On the current generated by a galvanic cell driven by photosynthetic electron transport. Bioelectrochem Bioenerg 6:563–574

    Article  CAS  Google Scholar 

  55. Okano M, Iida T, Shinohara H, Kobayashi H (1984) Water photolysis by a photoelectrochemical cell using an immobilized chloroplasts-methyl viologen system. Agric Biol Chem 48:1977–1983

    CAS  Google Scholar 

  56. Hill HAO, Walton NJ, Whitford D (1985) The coupling of heterogeneous electron transfer to photosystem–1. J Electroanal Chem 187:109–119

    Article  CAS  Google Scholar 

  57. Lemieux S, Carpentier R, Allen H, Hill O, Walton NJ, Whitford D (2001) Properties of a photosystem II preparation in a photochemical cell. J Electroanal Chem 496:109–119

    Google Scholar 

  58. Martens N, Hall EAH (1994) Diaminodurene as a mediator of a photocurrent using intact cells of cyanobacteria. Photochem Photobiol 59:91–98

    Article  CAS  Google Scholar 

  59. Torimura M, Miki A, Wadano A, Kano K, Ikeda T (2001) Electrochemical investigation of Cyanobacteria Synechococcus sp. PCC7942-catalyzed photoreduction of Exogenous Quinones and photoelectrochemical oxidation of water. J Electroanal Chem 496:21–28

    Google Scholar 

  60. Tsujimura S, Fujita F, Tatsumi H, Kano K, Ikeda T (2001) Bioelectrocatalysis-based dihydrogen/dioxygen fuel cell operating at physiological pH. Phys Chem Chem Phys 3:1331–1335

    Article  CAS  Google Scholar 

  61. Mimcault M, Carpentier R (1989) Kinetics of photocurrent induction by a thylakoid containing electrochemical cell. J Electroanal Chem 276:145–158

    Article  Google Scholar 

  62. Carpentier R, Lemieux S, Mimeault M, Purcell M, Goetze DC (1989) A Photoelectrochemical cell using immobilized photosynthetic membranes. J Electroanal Chem 276:391–401

    Article  Google Scholar 

  63. Hasan K, Dilgin Y, Emek SC, Tavahodi M, Akerlund HE, Albertsson P, Gorton L (2014) Photoelectrochemical communication between thylakoid membranes and gold electrodes through different quinone derivatives. ChemElectroChem 1:131–139

    Article  CAS  Google Scholar 

  64. Takeuchi R, Suzuki A, Sakai K, Kitazumi Y, Shirai O, Kano K (2018) Construction of photo-driven bioanodes using thylakoid membranes and multi-walled carbon nanotubes. Bioelectrochemistry 122:158–163

    Article  CAS  PubMed  Google Scholar 

  65. Adachi T, Kataoka K, Kitazumi Y, Shirai O, Kano K (2019) A bio-solar cell with thylakoid membranes and bilirubin oxidase. Chem Lett 48:686–689

    Article  CAS  Google Scholar 

  66. Armstrong FA, Hirst J (2011) Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes. Proc Natl Acad Sci 108:14049–14054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Milton RD, Cai R, Abdellaoui S, Leech D, De Lacey AL, Pita M, Minteer SD (2017) Bioelectrochemical Haber-Bosch process: an ammonia-producing H2/N2 fuel cell. Angew Chem Int Ed 56:2680–2683

    Article  CAS  Google Scholar 

  68. Sakai K, Sugimoto Y, Kitazumi Y, Shirai O, Takagi K, Kano K (2017) Direct electron transfer-type bioelectrocatalytic interconversion of carbon dioxide/formate and NAD(+)/NADH redox couples with tungsten-containing formate dehydrogenase. Electrochim Acta 228:537–544

    Article  CAS  Google Scholar 

  69. Reda T, Plugge CM, Abram NJ, Hirst J (2008) Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc Natl Acad Sci 105:10654–10658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bassegoda A, Madden C, Wakerley DW, Reisner E, Hirst J (2014) Reversible interconversion of CO2 and formate by a molybdenum–containing formate dehydrogenase. J Am Chem Soc 136:15473–15476

    Article  CAS  PubMed  Google Scholar 

  71. Siritanaratkul B, Megarity CF, Roberts TG, Samuels TOM, Winkler M, Warner JH, Happe T, Armstrong FA (2017) Transfer of photosynthetic NADP+/NADPH recycling activity to a porous metal oxide for highly specific, electrochemically–driven organic synthesis. Chem Sci 8:4579–4586

    Google Scholar 

  72. Wan L, Megarity CF, Siritanaratkul B, Armstrong FA (2018) A Hydrogen fuel cell for rapid, enzyme–catalysed organic synthesis with continuous monitoring. Chem Commun 54:972–975

    Article  CAS  Google Scholar 

  73. Adachi T, Kitazumi Y, Shirai O, Kano K (2018) Construction of a bioelectrochemical formate generating system from carbon dioxide and dihydrogen. Electrochem Commun 97:73–76

    Article  CAS  Google Scholar 

  74. Shomura Y, Taketa M, Nakashima H, Tai H, Nakagawa H, Ikeda Y, Ishii M, Igarashi Y, Nishihara H, Yoon KS et al (2017) Structural basis of the redox switches in the NAD+–reducing Soluble [NiFe]–hydrogenase. Science 357:928–938

    Article  CAS  PubMed  Google Scholar 

  75. Kano K, Takagi K, Ogino Y, Ikeda T (1995) Quinone–mediated bioelectrochemical reduction of NAD(P)+ catalyzed by flavoproteins. Chem Lett 24:589–590

    Article  Google Scholar 

  76. Matsumoto R, Kakuta M, Sugiyama T, Goto Y, Sakai H, Tokita Y, Hatazawa T, Tsujimura S, Shirai O, Kano K (2010) A liposome–based energy conversion system for accelerating the multi–enzyme reactions. Phys Chem Chem Phys 12:13904–13906

    Article  CAS  PubMed  Google Scholar 

  77. Megarity CF, Siritanaratkul B, Heath RS, Wan L, Morello G, FitzPatrick SR, Booth RL, Sills AJ, Robertson AW, Warner JH et al (2019) Electrocatalytic volleyball: rapid nanoconfined nicotinamide cycling for organic synthesis in electrode pores. Angew Chem Int Ed 58:4948–4952

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Kano .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kano, K., Shirai, O., Kitazumi, Y., Sakai, K., Xia, HQ. (2021). Applications to Biofuel Cells and Bioreactors. In: Enzymatic Bioelectrocatalysis. Springer, Singapore. https://doi.org/10.1007/978-981-15-8960-7_7

Download citation

Publish with us

Policies and ethics