Skip to main content

Applications to Biosensors

  • Chapter
  • First Online:
Enzymatic Bioelectrocatalysis

Abstract

Amperometric biosensors is one of applications of bioelectrocatalysis, and glucose biosensor is the most well-known and successful example of all biosensor devices. This chapter describes several proposals for bioelectrocatalysis-based biosensors: MET-type mass transfer-controlled biosensors, MET-type potentiometric coulometry, and bienzyme biosensing by coupling DET-type peroxidase bioelectrocatalysis and oxidase reaction without any mediators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang J (2001) Glucose biosensors: 40 years of advances and challenges. Electroanalysis 13:983–988

    Article  CAS  Google Scholar 

  2. Murphy L (2006) Biosensors and bioelectrochemistry. Curr Opin Chem Biol 10:177–184

    Article  CAS  Google Scholar 

  3. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825

    Article  CAS  Google Scholar 

  4. Zhang X, Ju H, Wang J (2008) Electrochemical sensors, biosensors and their biomedical applications. Academic Press

    Google Scholar 

  5. Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    Article  CAS  Google Scholar 

  6. Kaisti M (2017) Detection principles of biological and chemical FET sensors. Biosens Bioelectron 98:437–448

    Article  CAS  Google Scholar 

  7. Syu YC, Hsu WE, Lin CT (2018) Review-field-effect transistor biosensing: devices and clinical applications. ECS J Solid State Sci Technol 7:Q3196–Q3207

    Article  CAS  Google Scholar 

  8. Xia H-Q, Kitazumi Y, Sirai O, Kano K (2017) Direct electron transfer-type bioelectrocatalysis of peroxidase at mesoporous carbon electrodes and its application for glucose determination based on bienzyme system. Anal Sci 33:839–844

    Article  CAS  Google Scholar 

  9. Emr SA, Yacynych AM (1995) Use of polymer films in amperometric biosensors and chemically modified electrodes. Electroanalysis 7:357

    Article  Google Scholar 

  10. Sasso SV, Pierce RJ, Walla R, Yacynych AM (1990) Electropolymerized 1, 2-Diaminobenzene as a means to prevent interferences and fouling and to stabilize immobilized enzyme in electrochemical biosensors. Anal Chem 62:1111–1117

    Article  CAS  Google Scholar 

  11. Nieh CH, Tsujimura S, Shirai O, Kano K (2013) Amperometric biosensor based on reductive H2O2 detection using pentacyanoferrate-bound polymer for creatinine determination. Anal Chim Acta 767:128–133

    Article  CAS  Google Scholar 

  12. Nieh CH, Kitazumi Y, Shirai O, Kano K (2013) Sensitive d-Amino acid biosensor based on oxidase/peroxidase system mediated by pentacyanoferrate-bound polymer. Biosens Bioelectron 47:350–355

    Article  CAS  Google Scholar 

  13. Zhang X, Ju H, Wang J (2008) Electrochemical sensors, biosensors and their biomedical applications. Academic Press. https://doi.org/10.1016/B978-0-12-373738-0.X5001-6

  14. Levich VG (1942) The theory of concentration overpotential. Acta Physicochim URSS 17:257–307

    CAS  Google Scholar 

  15. Saito Y (1968) A theoretical study on the diffusion current at the stationary electrodes of circular and narrow band types. Rev Polarogra 15:177–187

    Article  CAS  Google Scholar 

  16. Szabo A, Cope DK, Tallman DE, Kovach PM, Wightman RM (1987) Chronoamperometric current at hemicylinder and band microelectrodes: theory and experiment. J Electroanal Chem 217:417–423

    Article  CAS  Google Scholar 

  17. Kitazumi Y, Hamamoto K, Noda T, Shirai O, Kano K (2015) Fabrication and characterization of ultrathin-ring electrodes for pseudo-steady-state amperometric detection. Anal. Sci. 31:603–607

    Article  CAS  Google Scholar 

  18. Noda T, Wanibuchi M, Kitazumi Y, Tsujimura S, Shirai O, Yamamoto M, Kano K (2013) Diffusion-controlled detection of glucose with microelectrodes in mediated bioelectrocatalytic oxidation. Anal Sci 29:279–281

    Article  CAS  Google Scholar 

  19. Kitazumi Y, Noda T, Shirai O, Yamamoto M, Kano K (2014) Characteristics of fast mediated bioelectrocatalytic reaction near microelectrodes. Phys Chem Chem Phys 16:8905

    Article  CAS  Google Scholar 

  20. Matsui Y, Hamamoto K, Kitazumi Y, Shirai O, Kano K (2017) Diffusion-controlled mediated electron transfer-type bioelectrocatalysis using microband electrodes as ultimate amperometric glucose sensors. Anal Sci 33:845–851

    Article  CAS  Google Scholar 

  21. Matsui Y, Kitazumi Y, Shirai O, Kano K (2018) Simultaneous detection of lactate enantiomers based on diffusion-controlled bioelectrocatalysis. Anal Sci 34:1137–1142

    Article  CAS  Google Scholar 

  22. Uchiyama S, Kobayashi Y, Suzuki S, Hamamoto O (1991) Selective biocoulometry of vitamin C using dithiothreithol, N-Ethylmaleimide, and ascorbate oxidase. Anal Chem 63:2259–2262

    Article  CAS  Google Scholar 

  23. Morris NA, Cardosi MF, Birch BJ, Turner APF (1992) An Electrochemical capillary fill device for the analysis of glucose incorporating glucose oxidase and ruthenium (III) hexamine as mediator. Electroanalysis 4:1–9

    Article  CAS  Google Scholar 

  24. Fukaya M, Ebisuya H, Furukawa K, Akita S, Kawamura Y, Uchiyama S (1995) Self-driven coulometry of ethanol, d-Glucose and d-Fructose using ubiquinone-dependent dehydrogenase reactions. Anal Chim Acta 306:231–236

    Article  CAS  Google Scholar 

  25. Tsujimura S, Kojima S, Ikeda T, Kano K (2006) Potential-step coulometry of d -Glucose Using a novel FAD-dependent glucose dehydrogenase. Anal Bioanal Chem 386:645–651

    Article  CAS  Google Scholar 

  26. Bucking C, Piepenbrock A, Kappler A, Gescher J (2012) Outer-membrane cytochrome-independent reduction of extracellular electron acceptors in Shewanella oneidensis. Microbiology 158:2144–2157

    Article  Google Scholar 

  27. Mizutani F, Ohta E, Mie Y, Niwa O (2007) Determination of hydrogen peroxide based on the charge accumulation and electrochemical reduction at an osmium complex/peroxidase-coated electrode. Chem Lett 36:1148–1149

    Article  CAS  Google Scholar 

  28. Nieh CH, Kitazumi Y, Shirai O, Yamamoto M, Kano K (2013) Potentiometric coulometry based on charge accumulation with a peroxidase/osmium polymer-immobilized electrode for sensitive determination of hydrogen peroxide. Electrochem Commun 33:135–137

    Article  CAS  Google Scholar 

  29. Katsube R, Kitazumi Y, Shirai O, Yamamoto M, Kano K (2016) Potentiometric coulometry using a liquid-film-modified electrode as a reversible surface-confined system. J Electroanal Chem 780:114–118

    Article  CAS  Google Scholar 

  30. Kakiuchi T (2014) Ionic liquid salt bridge—current stage and perspectives: a mini review. Electrochem Commun 45:37–39

    Article  CAS  Google Scholar 

  31. Ruzgas T, Csöregi E, Emnéus J, Gorton L, Marko-Varga G (1996) Peroxidase-modified electrodes: fundamentals and application. Anal Chim Acta 330:123–138

    Article  CAS  Google Scholar 

  32. Xia H, Kitazumi Y, Shirai O, Ohta H, Kurihara S, Kano K (2017) Putrescine oxidase/peroxidase-co-immobilized and mediator-less mesoporous microelectrode for diffusion-controlled steady-state amperometric detection of putrescine. J Electroanal Chem 804:128–132

    Article  CAS  Google Scholar 

  33. Kawai H, Kitazumi Y, Shirai O, Kano K (2019) Performance analysis of an oxidase/peroxidase-based mediatorless amperometric biosensor. J Electroanal Chem 841:73–78

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Kano .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kano, K., Shirai, O., Kitazumi, Y., Sakai, K., Xia, HQ. (2021). Applications to Biosensors. In: Enzymatic Bioelectrocatalysis. Springer, Singapore. https://doi.org/10.1007/978-981-15-8960-7_6

Download citation

Publish with us

Policies and ethics