Skip to main content

Protein-Engineering Approach for Improvement of DET-Type Bioelectrocatalytic Performance

  • Chapter
  • First Online:
Enzymatic Bioelectrocatalysis

Abstract

Recent advances in the area of protein-engineering have facilitated the production of mutated proteins predesigned to enhance the electronic coupling with electrodes. In this chapter, we will start from the motivation of protein engineering and introduce typical protein-engineering strategies for improvement of DET-type bioelectrocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adachi T, Kitazumi Y, Shirai O, Kano K (2020) Direct electron transfer-type bioelectrocatalysis of redox enzymes at nanostructured electrodes. Catalysts 10:236

    Article  CAS  Google Scholar 

  2. Sakai K, Kitazumi Y, Shirai O, Kano K (2018) Nanostructured porous electrodes by the anodization of gold for an application as scaffolds in direct-electron-transfer-type bioelectrocatalysis. Anal Sci 34:1317–1322

    Article  CAS  Google Scholar 

  3. Xia H, Kitazumi Y, Shirai O, Kano K (2017) Direct electron transfer-type bioelectrocatalysis of peroxidase at mesoporous carbon electrodes and its application for glucose determination based on bienzyme system. Anal Sci 33:839

    Article  CAS  Google Scholar 

  4. Takahashi Y, Wanibuchi M, Kitazumi Y, Shirai O, Kano K (2019) Improved direct electron transfer-type bioelectrocatalysis of bilirubin oxidase using porous gold electrodes. J Electroanal Chem 843:47–53

    Article  CAS  Google Scholar 

  5. Wanibuchi M, Takahashi Y, Kitazumi Y, Shirai O, Kano K (2020) Significance of nano-structures of carbon materials for direct-electron-transfer-type bioelectrocatalysis of bilirubin oxidase. Electrochemistry (in press). https://doi.org/10.5796/electrochemistry.5720-64063

  6. Mazurenko I, de Poulpiquet A, Lojou E (2017) Recent developments in high surface area bioelectrodes for enzymatic fuel cells. Curr Opin Electrochem 5:74–84

    Article  CAS  Google Scholar 

  7. Sugimoto Y, Kitazumi Y, Shirai O, Kano K (2017) Effects of mesoporous structures on direct electron transfer-type bioelectrocatalysis: facts and simulation on a three-dimensional model of random orientation of enzymes. Electrochemistry 85:82–87

    Article  CAS  Google Scholar 

  8. Sugimoto Y, Takeuchi R, Kitazumi Y, Shirai O, Kano K (2016) Significance of mesoporous electrodes for noncatalytic faradaic process of randomly oriented redox proteins. J Phys Chem C 120:26270–26277

    Article  CAS  Google Scholar 

  9. Hitaishi V, Clement R, Bourassin N, Baaden M, de Poulpiquet A, Sacquin-Mora S, Ciaccafava A, Lojou E (2018) Controlling redox enzyme orientation at planar electrodes. Catalysts 8:192

    Article  Google Scholar 

  10. Sugimoto Y, So K, Xia H, Kano K (2018) Orientation-oriented adsorption and immobilization of redox enzymes for electrochemical communication with electrodes. In: Wandelt K (ed) Encyclopedia of interfacial chemistry: surface science and electrochemistry. Elsevier, Amsterdam, pp 403–421

    Google Scholar 

  11. Mazurenko I, Hitaishi V, Lojou E (2020) Recent advances in surface chemistry of electrodes to promote direct enzymatic bioelectrocatalysis. Curr Opin Electrochem 19:113–121

    Article  CAS  Google Scholar 

  12. Güven G, Prodanovic R, Schwaneberg U (2010) Protein engineering–an option for enzymatic biofuel cell design. Electroanalysis 22:765–775

    Article  Google Scholar 

  13. Wong TS, Schwaneberg U (2003) Protein engineering in bioelectrocatalysis. Curr Opin Biotechnol 14:590–596

    Google Scholar 

  14. Renner JN, Minteer SD (2016) The use of engineered protein materials in electrochemical devices. Experimental Bio Medi 1–6

    Google Scholar 

  15. Akram MS, Rehman JU, Hall EAH (2014) Engineered proteins for bioelectrochemistry. Annu Rev Anal Chem 7:257–274

    Article  CAS  Google Scholar 

  16. Tremey E, Stines-Chaumeil C, Gounel S, Mano N (2017) Designing an O2-insensitive glucose oxidase for improved electrochemical applications. ChemElectroChem 4:2520–2526

    Article  CAS  Google Scholar 

  17. Masakari Y, Hara C, Araki Y, Gomi K, Ito K (2020) Improvement in the thermal stability of Mucor Prainii-derived FAD-dependent glucose dehydrogenase via protein chimerization. Enzyme Microb Technol 132:109387

    Article  CAS  Google Scholar 

  18. Prévoteau A, Courjean O, Mano N (2010) Deglycosylation of glucose oxidase to improve biosensors and biofuel cells. Electrochem Commun 12:213–215

    Article  Google Scholar 

  19. Hibino Y, Kawai S, Kitazumi Y, Shirai O, Kano K (2016) Mutation of heme c axial ligands in d-fructose dehydrogenase for investigation of electron transfer pathways and reduction of overpotential in direct electron transfer-type bioelectrocatalysis. Electrochem Commun 67:43–46

    Article  CAS  Google Scholar 

  20. Li Y, Zhang J, Huang X, Wang T (2014) Construction and direct electrochemistry of orientation controlled laccase electrode. Biochem Biophys Res Commun 446:201–205

    Article  CAS  Google Scholar 

  21. Presnova G, Grigorenko V, Egorov A, Ruzgas T, Lindgren A, Gorton L, Börchers T (2000) Direct heterogeneous electron transfer of recombinant horseradish peroxidases on gold. Faraday Discuss 116:281–289

    Article  CAS  Google Scholar 

  22. Ferapontova EE, Castillo J, Hushpulian D, Tishkov V, Chubar T, Gazaryan I, Gorton L (2005) Direct electrochemistry of recombinant tobacco peroxidase on gold. J Electroanal Chem 7:1291–1297

    CAS  Google Scholar 

  23. Ortix R, Rahman M, Zangrilli B, Sygmund C, Micheelsen PO, Silow M, Toscano MD, Ludwig R, Gorton L (2017) Engineering of cellobiose dehydrogenases for improved glucose sensitivity and reduced maltose affinity. ChemElectroChem 4:846–855

    Article  Google Scholar 

  24. Yakovleva ME, Gonaus C, Schropp K, Oconghaile P, Leech D, Peterbauer CK, Gorton L (2015) Engineering of pyranose dehydrogenase for application to enzymatic anodes in biofuel cells. Phys Chem Chem Phys 17:9074–9081

    Article  CAS  Google Scholar 

  25. Courjean O, Gao F, Mano N (2009) Deglycosylation of glucose oxidase for direct and efficient glucose electrooxidation on a glassy carbon electrode. Angew Chem Int Ed 48:5897–5899

    Google Scholar 

  26. Bartlett PN, Al-Lolage FA (2018) There is no evidence to support literature claims of direct electron transfer (DET) for native glucose oxidase (GOx) at carbon nanotubes or grapheme. J Electroanal Chem 819:26–37

    Google Scholar 

  27. Wilson GS (2016) Native glucose oxidase does not undergo direct electron transfer. Biosens Bioelectron 82:vii–viii

    Google Scholar 

  28. Sakai K, Sugimoto Y, Kitazumi Y, Shirai O, Takagi K, Kano K (2017) Direct electron transfer-type bioelectrocatalytic interconversion of carbon dioxide/formate and NAD(+)/NADH redox couples with tungsten-containing formate dehydrogenase. Electrochim Acta 228:537–544

    Article  CAS  Google Scholar 

  29. Kawai S, Goda-Tsutsumi M, Yakushi T, Kano K, Matsushita K (2013) Heterologous overexpression and characterization of a flavoprotein-cytochrome c complex fructose dehydrogenase of Gluconobacter japonicus NBRC3260. Appl Environ Microbiol 79:1654–1660

    Article  CAS  Google Scholar 

  30. Kawai S, Yakushi T, Matsushita K, Kitazumi Y, Shirai O, Kano K (2014) The electron transfer pathway in direct electrochemical communication of fructose dehydrogenase with electrodes. Electrochem Commun 38:28–31

    Article  CAS  Google Scholar 

  31. Hibino Y, Kawai S, Kitazumi Y, Shirai O, Kano K (2017) Construction of a protein-engineered variant of D-fructose dehydrogenase for direct electron transfer-type bioelectrocatalysis. Electrochem Commun 77:112–115

    Article  CAS  Google Scholar 

  32. Kaida Y, Hibino Y, Kitazumi Y, Shirai O, Kano K (2019) Ultimate downsizing of D-fructose dehydrogenase for improving the performance of direct electron transfer-type bioelectrocatalysis. Electrochem Commun 98:101–105

    Article  CAS  Google Scholar 

  33. Miura Y, Tsujimura S, Kurose S, Kamitaka Y, Kataoka K, Sakurai T, Kano K (2009) Direct electrochemistry of CueO and its mutants at residues to and near type I Cu for oxygen-reducing biocathode. Fuel Cells 9:70–78

    Article  CAS  Google Scholar 

  34. Kamitaka Y, Tsujimura S, Kataoka K, Sakurai T, Ikeda T, Kano K (2007) Effects of axial ligand mutation of the type I copper site in bilirubin oxidase on direct electron transfer-type bioelectrocatalytic reduction of dioxygen. J Electroanal Chem 601:119–124

    Article  CAS  Google Scholar 

  35. Zhang L, Cui H, Zou Z, Mirzaeigarakani T, Novoa-Henriquez C, Jooyeh B, Schwaneberg U (2019) Directed evolution of a bacterial laccase (CueO) for enzymatic biofuel cells. Angew Chem Int Ed 58:4562–4565

    Google Scholar 

  36. Hibino Y, Kawai S, Kitazumi Y, SHirai O, Kano K (2019) Protein-engineering improvement of direct electron transfer-type bioelectrocatalytic properties of D-fructose dehydrogenase. Electrochemistry 87:47–51

    Google Scholar 

  37. Kaida Y, Hibino Y, Kitazumi Y, Shirai O, Kano K (2020) Discussion on direct electron transfer-type bioelectrocatalysis of downsized and axial-ligand exchanged variants of D-fructose dehydrogenase. Electrochemistry 88:195–199

    Article  CAS  Google Scholar 

  38. Sakai K, Xia H-Q, Kitazumi Y, Shirai O, Kano K (2018) Assembly of direct-electron-transfer-type bioelectrodes with high performance. Electrochim Acta 271:305

    Article  CAS  Google Scholar 

  39. Xia H-Q, Kitazumi Y, Shirai O, Kano K (2016) Enhanced direct electron transfer-type bioelectrocatalysis of bilirubin oxidase on negatively charged aromatic compound-modified carbon electrode. J Electroanal Chem 763:104–109

    Article  CAS  Google Scholar 

  40. So K, Kawai S, Hamano Y, Kitazumi Y, Shirai O, Hibi M, Ogawa J, Kano K (2014) Improvement of a direct electron transfer-type fructose/dioxygen biofuel cell with a substrate-modified biocathode. Phys Chem Chem Phys 16:4823–4829

    Article  CAS  Google Scholar 

  41. Xia H-Q, So K, Kitazumi Y, Shirai O, Nishikawa K, Higuchi Y, Kano K (2016) Dual gas-diffusion membrane- and mediatorless dihydrogen/air-breathing biofuel cell operating at room temperature. J Power Sources 335:105–112

    Article  CAS  Google Scholar 

  42. Xia H-Q, Hibino Y, Kitazumi Y, Shirai O, Kano K (2016) Interaction between d-fructose dehydrogenase and methoxy-substituent-functionalized carbon surface to increase productive orientations. Electrochim Acta 218:41–46

    Article  CAS  Google Scholar 

  43. Sakai K, Kitazumi Y, Shirai O, Takagi K, Kano K (2017) Direct electron transfer-type four-way bioelectrocatalysis of CO2/formate and NAD+/NADH redox couples by tungsten-containing formate dehydrogenase adsorbed on gold nanoparticle-embedded mesoporous carbon electrodes modified with 4-mercaptopyridine. Electrochem Commun 84:75

    Article  CAS  Google Scholar 

  44. Ferapontova E, Schmengler K, Borchers T, Ruzgas T, Gorton L (2002) Effect of cysteine mutations on direct electron transfer of horseradish peroxidase on gold. Biosens Bioelectron 17:953–963

    Article  CAS  Google Scholar 

  45. Takamura E, Suzuki H, Sakamoto H, Satomura T, Nakamura T, Sakuraba H, Ohshima T, Suye S-I (2019) Improvement in electron transfer efficiency between multicopper oxidase and electrode by immobilization of directly oriented enzyme molecules. J Fiber Sci Technol 75:47–51

    Article  Google Scholar 

  46. Al-Lolage FA, Bartlett PN, Gounel Sb, Staigre P, Mano N (2019) Site-directed immobilization of bilirubin oxidase for electrocatalytic oxygen reduction. ACS Catal 9:2068–2078

    Google Scholar 

  47. Al-Lolage FA, Meneghello M, Ma S, Ludwig R, Bartlett PN (2017) A Flexible method for the stable, covalent immobilization of enzymes at electrode surfaces. ChemElectroChem 4:1528–1534

    Article  CAS  Google Scholar 

  48. Ataka K, Giess F, Knoll W, Naumann R, Haber-Pohlmeier S, Richter B, Heberle J (2004) Oriented attachment and membrane reconstitution of his-tagged cytochrome c oxidase to a gold electrode: in situ monitoring by surface-enhanced infrared absorption spectroscopy. J Am Chem Soc 126:16199–16206

    Google Scholar 

  49. Ataka K, Richter B, Heberle J (2006) Orientational control of the physiological reaction of cytochrome c oxidase tethered to a gold electrode. J Phys Chem B 110:9339–9347

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Kano .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kano, K., Shirai, O., Kitazumi, Y., Sakai, K., Xia, HQ. (2021). Protein-Engineering Approach for Improvement of DET-Type Bioelectrocatalytic Performance. In: Enzymatic Bioelectrocatalysis. Springer, Singapore. https://doi.org/10.1007/978-981-15-8960-7_5

Download citation

Publish with us

Policies and ethics