Skip to main content

Characteristic Properties of Redox Enzymes as Electrocatalysts

  • Chapter
  • First Online:
Enzymatic Bioelectrocatalysis
  • 299 Accesses

Abstract

This chapter introduces specific features of redox enzymes as electrode catalysts compared with metallic small catalysts. Large sizes of redox enzymes causes inconvenient effects of the enzyme orientation on DET-type bioelectrocatalysis. The significant of mesoporous structures to minimize the orientation effects is emphasized. In addition, this chapter describes peculiar and important effects that can facilitate the interfacial electron transfer kinetics at the top edge of microporous structures. Some strategies for enzyme orientations to enhance the interfacial electron transfer are also introduced together with examples for individual enzymes. Bidirectional redox catalysis as one of the important features of enzyme catalysts is exemplified and the performance will be discussed in back-to-basic style based of Marcus theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Poulpiquet A, Ciaccafava A, Lojou E (2014) New trends in enzyme immobilization at nanostructured interfaces for efficient electrocatalysis in biofuel cells. Electrochim Acta 126:104–114

    Article  CAS  Google Scholar 

  2. Tsutsumi M, Tsujimura S, Shirai O, Kano K (2009) Direct electrochemistry of histamine dehydrogenase from Nocardioides simplex. J Electroanal Chem 625:144–148

    Article  CAS  Google Scholar 

  3. Murata K, Suzuki M, Kajiya K, Nakamura K, Ohno H (2009) High performance bioanode based on direct electron transfer of fructose dehydrogenase at gold nanoparticle-modified electrodes. Electrochem Commun 11:668–671

    Article  CAS  Google Scholar 

  4. Siepenkoetter T, Salaj-Kosla U, Magner E (2017) The immobilization of fructose dehydrogenase on nanoporous gold electrodes for the detection of fructose. ChemElectroChem 4:905–912

    Article  CAS  Google Scholar 

  5. Bollella P, Hibino Y, Kano K, Gorton L, Antiochia R (2018) Highly sensitive membraneless fructose biosensor based on fructose dehydrogenase immobilized onto aryl thiol modified highly porous gold electrode: characterization and application in food samples. Anal Chem 90:12131–12136

    Article  CAS  PubMed  Google Scholar 

  6. Tsujimura S, Nishina A, Hamano Y, Kano K, Shiraishi S (2010) Electrochemical reaction of fructose dehydrogenase on carbon cryogel electrodes with controlled pore sizes. J Electroanal Chem 12:446–449

    CAS  Google Scholar 

  7. Funabashi H, Takeuchi S, Tsujimura S (2017) Hierarchical meso/macro-porous carbon fabricated from dual MgO templates for direct electron transfer enzymatic electrodes. Sci Rep 7:45147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sakai K, Kitazumi Y, Shirai O, Kano K (2018) Nanostructured porous electrodes by the anodization of gold for an application as scaffolds in direct-electron-transfer-type bioelectrocatalysis. Anal Sci 34:1317–1322

    Article  CAS  PubMed  Google Scholar 

  9. Xia H, Kitazumi Y, Shirai O, Kano K (2017) Direct electron transfer-type bioelectrocatalysis of peroxidase at mesoporous carbon electrodes and its application for glucose determination based on bienzyme system. Anal Sci 33:839–844

    Article  CAS  PubMed  Google Scholar 

  10. Sugimoto Y, Kitazumi Y, Shirai O, Kano K (2017) Effects of mesoporous structures on direct electron transfer-type bioelectrocatalysis: facts and simulation on a three-dimensional model of random orientation of enzymes. Electrochemistry 85:82–87

    Article  CAS  Google Scholar 

  11. Kamitaka Y, Tsujimura S, Ikeda T, Kano K (2006) Electrochemical quartz crystal microbalance study of direct bioelectrocatalytic reduction of bilirubin oxidase. Electrochemistry 74:642–644

    Article  CAS  Google Scholar 

  12. Murata K, Kajiya K, Nakamura N, Ohno H (2009) Direct electrochemistry of bilirubin oxidase on three-dimensional gold nanoparticle electrodes and its application in a biofuel cell. Energy Environ Sci 2:1280–1285

    Article  CAS  Google Scholar 

  13. Takahashi Y, Wanibuchi M, Kitazumi Y, Shirai O, Kano K (2019) Improved direct electron transfer-type bioelectrocatalysis of bilirubin oxidase using porous gold electrodes. J Electroanal Chem 843:47–53

    Article  CAS  Google Scholar 

  14. Monsalve K, Roger M, Gutierrez-Sanchez C, Ilbert M, Nitsche S, Byrne-Kodjabachian D, Marchi V, Lojou E (2015) Hydrogen bioelectrooxidation on gold nanoparticle-based electrodes modified by Aquifex aeolicus hydrogenase: application to hydrogen/oxygen enzymatic biofuel cells. Bioelectrochemistry 106:47–55

    Article  CAS  PubMed  Google Scholar 

  15. Krikstolaityte V, Barrantes A, Ramanavicius A, Arnebrant T, Shleev S, Ruzgas T (2014) Bioelectrocatalytic reduction of oxygen at gold nanoparticles modified with laccase. Bioelectrochemistry 95:1–6

    Article  CAS  PubMed  Google Scholar 

  16. Wanibuchi M, Takahashi Y, Kitazumi Y, Shirai O, Kano K (2020) Significance of nano-structures of carbon materials for direct-electron-transfer-type bioelectrocatalysis of bilirubin oxidase. Electrochemistry, in press. https://doi.org/10.5796/electrochemistry.5720-64063

  17. Kitazumi Y, Shirai O, Yamamoto M, Kano K (2013) Numerical simulation of diffuse double layer around microporous electrodes based on the Poisson-Boltzmann equation. Electrochim Acta 112:171–175

    Article  CAS  Google Scholar 

  18. Oldham KB, Myland JC, Bond AM (2012) Electrochemical science and technology fundamentals and applications. Wiley, Chichester

    Google Scholar 

  19. Personal communication by M. Yamamoto.

    Google Scholar 

  20. Jackson JD (1998) Classical electrodynamics, 3rd edn, Chap. 2, Section 11. Wiley, Chichester

    Google Scholar 

  21. Sugimoto Y, So K, Xia H, Kano K (2018) Orientation-oriented adsorption and immobilization of redox enzymes for electrochemical communication with electrodes. In: Wandelt K (ed) Encyclopedia of interfacial chemistry: surface science and electrochemistry. Elsevier, Amsterdam, pp 403–421

    Google Scholar 

  22. Xia H, Kitazumi Y, Shirai O, Kano K (2016) Enhanced direct electron transfer-type bioelectrocatalysis of bilirubin oxidase on negatively charged aromatic compound-modified carbon electrode. J Electroanal Chem 763:104–109

    Article  CAS  Google Scholar 

  23. Xia H, So K, Kitazumi Y, Shirai O, Nishikawa K, Higuchi Y, Kano K (2016) Dual gas-diffusion membrane- and mediatorless dihydrogen/air-breathing biofuel cell operating at room temperature. J Power Sources 335:105–112

    Article  CAS  Google Scholar 

  24. Sugimoto Y, Kitazumi Y, Shirai O, Yamamoto M, Kano K (2016) Understanding of the effects of ionic strength on the bimolecular rate constant between structurally identified redox enzymes and charged substrates using numerical simulations on the basis of the Poisson-Boltzmann equation. J Phys Chem B 120:3122–3128

    Article  CAS  PubMed  Google Scholar 

  25. Blanford CF, Heath RS, Armstrong FA (2007) A stable eectrode for high-potential, electrocatalytic O2 reduction based on rational attachment of a blue copper oxidase to a graphite surface. Chem Commun 17:1710–1712

    Article  CAS  Google Scholar 

  26. Giroud F, Minteer SD (2013) Anthracene-modified pyrenes immobilized on carbon nanotubes for direct electroreduction of O2 by laccase. Electrochem Commun 34:157–160

    Article  CAS  Google Scholar 

  27. So K, Kawai S, Hamano Y, Kitazumi Y, Shirai O, Hibi M, Ogawa J, Kano K (2014) Improvement of a direct electron transfer-type fructose/dioxygen biofuel cell with a substrate-modified biocathode. Phys Chem Chem Phys 16:4823–4829

    Article  CAS  PubMed  Google Scholar 

  28. Xia H, Hibino Y, Kitazumi Y, Shirai O, Kano K (2016) Interaction between d-fructose dehydrogenase and methoxy-substituent-functionalized carbon surface to increase productive orientations. Electrochim Acta 218:41–46

    Article  CAS  Google Scholar 

  29. Kawai S, Yakushi T, Matsushita K, Kitazumi Y, Shirai O, Kano K (2014) The electron transfer pathway in direct electrochemical communication of fructose dehydrogenase with electrodes. Electrochem Commun 38:28–31

    Article  CAS  Google Scholar 

  30. Mazurenko I, Monsalve K, Rouhana J, Parent P, Laffon C, Goff AL, Szunerits S, Boukherroub R, Giudici-Orticoni M-T, Mano N et al (2016) How the intricate interactions between carbon nanotubes and two bilirubin oxidases control direct and mediated O2 reduction. ACS Appl Mater Interfaces 8:23074–23085

    Article  CAS  PubMed  Google Scholar 

  31. Pankratov DV, Zeifman YS, Dudareva AV, Pankratova GK, Khlupova ME, Parunova YM, Zajtsev DN, Bashirova NF, Popov VO, Shleev SV (2014) Impact of surface modification with gold nanoparticles on the bioelectrocatalytic parameters of immobilized bilirubin oxidase. Acta Naturae 6:102–106

    Google Scholar 

  32. Takahashi Y, Kitazumi Y, Shirai O, Kano K (2019) Improved direct electron transfer-type bioelectrocatalysis of bilirubin oxidase using thiol-modified gold nanoparticles on mesoporous carbon electrode. J Electroanal Chem 832:158–164

    Article  CAS  Google Scholar 

  33. Schubert K, Goebel G, Listat F (2009) Bilirubin oxidase bound to multi-walled carbon nanotube-modified gold. Electrochim Acta 54:3033–3038

    Article  CAS  Google Scholar 

  34. Navaee A, Salimi A, Jafari F (2015) Electrochemical pretreatment of amino-carbon nanotubes on graphene support as a novel platform for bilirubin oxidase with improved bioelectrocatalytic activity towards oxygen reduction. Chem Eur J 21:4949–4953

    Article  CAS  PubMed  Google Scholar 

  35. Xia H, Kitazumi Y, Shirai O, Ozawa H, Onizuka M, Komukai T, Kano K (2017) Factors affecting the interaction between carbon nanotubes and redox enzymes in direct electron transfer-type bioelectrocatalysis. Bioelectrochemistry 118:70–74

    Article  CAS  PubMed  Google Scholar 

  36. Léger C, Bertrand P (2008) Direct electrochemistry of redox enzymes as a tool for mechanistic studies. Chem Rev 108:2379–2438

    Article  PubMed  CAS  Google Scholar 

  37. Sensi M, del Barrio M, Baffert C, Fourmond V, Léger C (2017) New perspectives in hydrogenase direct electrochemistry. Curr Opin Electrochem 5:135–145

    Article  CAS  Google Scholar 

  38. Ogata H, Mizoguchi Y, Mizuno N, Miki K, Adachi S, Yasuoka N, Yagi T, Yamauchi O, Hirota S, Higuchi Y (2002) Structural studies of the carbon monoxide complex of [NiFe]hydrogenase from Desulfovibrio vulgaris Miyazaki F: suggestion for the initial activation site for dihydrogen. J Am Chem Soc 124:11628–11635

    Article  CAS  PubMed  Google Scholar 

  39. Lojou E (2011) Hydrogenases as catalysts for fuel cells: strategies for efficient immobilization at electrode interfaces. Electrochim Acta 56:10385–10397

    Article  CAS  Google Scholar 

  40. Lojou É, Luo X, Brugna M, Candoni N, Dementin S, Giudici-Orticoni MT (2008) Biocatalysts for fuel cells: efficient hydrogenase orientation for H2 oxidation at electrodes modified with carbon nanotubes. J Biol Inorg Chem 13:1157–1167

    Article  CAS  PubMed  Google Scholar 

  41. Luo X, Brugna M, Tron-Infossi P, Giudici-Orticoni MT, Lojou E (2009) Immobilization of the hyperthermophilic hydrogenase from Aquifex aeolicus bacterium onto gold and carbon nanotube electrodes for efficient H2 oxidation. J Biol Inorg Chem 14:1275–1288

    Article  CAS  PubMed  Google Scholar 

  42. Hibino Y, Kawai S, Kitazumi Y, Shirai O, Kano K (2016) Mutation of heme c axial ligands in d-fructose dehydrogenase for investigation of electron transfer pathways and reduction of overpotential in direct electron transfer-type bioelectrocatalysis. Electrochem Commun 67:43–46

    Article  CAS  Google Scholar 

  43. Hibino Y, Kawai S, Kitazumi Y, Shirai O, Kano K (2017) Construction of a protein-engineered variant of D-fructose dehydrogenase for direct electron transfer-type bioelectrocatalysis. Electrochem Commun 77:112–115

    Article  CAS  Google Scholar 

  44. Kawai S, Yakushi T, Matsushita K, Kitazumi Y, Shirai O, Kano K (2015) Role of a non-ionic surfactant in direct electron transfer-type bioelectrocatalysis by fructose dehydrogenase. Electrochim Acta 152:19–24

    Article  CAS  Google Scholar 

  45. Armstrong FA, Hirst J (2011) Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes. Proc Natl Acad Sci 108:14049–14054

    Google Scholar 

  46. Kitazumi Y, Kano K, Bioelectrochemical and reversible interconversion in the proton/hydrogen and carbon dioxide/formate redox systems and its significance in future energy systems. In: Ishii M, Wakai S (eds) Electron-based bioscience and biotechnology), Chap. 7. Spring, Berlin, in press

    Google Scholar 

  47. Shiraiwa S, Kitazumi Y, Shirai O, Kano K, unpublished data

    Google Scholar 

  48. Sakai K, Kitazumi Y, Shirai O, Takagi K, Kano K (2017) Direct electron transfer-type four-way bioelectrocatalysis of CO2/formate and NAD+/NADH redox couples by tungsten-containing formate dehydrogenase adsorbed on gold nanoparticle-embedded mesoporous carbon electrodes modified with 4-mercaptopyridine. Electrochem Commun 84:75

    Article  CAS  Google Scholar 

  49. Sakai K, Sugimoto Y, Kitazumi Y, Shirai O, Takagi K, Kano K (2017) Direct electron transfer-type bioelectrocatalytic interconversion of carbon dioxide/formate and NAD(+)/NADH redox couples with tungsten-containing formate dehydrogenase. Electrochim Acta 228:537–544

    Article  CAS  Google Scholar 

  50. Hori Y, Vayenas CG, White RE, Gamboa-Aldeco ME (2008) Modern aspects of electrochemistry, vol 42. Springer, New York, pp 89–189

    Book  Google Scholar 

  51. Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochem Biophys Acta 811:265–322

    CAS  Google Scholar 

  52. Marcus RA (1993) Electron transfer reactions in chemistry: theory and experiment (nobel lecture). Angew Chem Int Ed 32:1111–1121

    Google Scholar 

  53. Marcus RA (1964) Chemical and electrochemical electron-transfer theory. Annu Rev Phys Chem 15:155–196

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Kano .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kano, K., Shirai, O., Kitazumi, Y., Sakai, K., Xia, HQ. (2021). Characteristic Properties of Redox Enzymes as Electrocatalysts. In: Enzymatic Bioelectrocatalysis. Springer, Singapore. https://doi.org/10.1007/978-981-15-8960-7_4

Download citation

Publish with us

Policies and ethics