Skip to main content

Fundamentals of DET-Type Bioelectrocatalysis

  • Chapter
  • First Online:
Enzymatic Bioelectrocatalysis

Abstract

This chapter starts by introducing the history of DET-type non-catalytic and bioelectrocatalytic reactions with much attention to the distinction between DET- and MET-type bioelectrocatalytic reactions. Theoretical features of DET-type bioelectrocatalysis are detailed with emphasis of orientation effect of redox enzymes and curvature effect of mesoporous electrodes. One of analytical methods for steady-state catalytic waves of DET-type bioelectrocatalysis is also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armstrong FA, Hill HAO, Walton NJ (1988) Direct electrochemistry of redox proteins. Acc Chem Res 21:407–413

    Article  CAS  Google Scholar 

  2. Barker PD, Hill HAO (1988) Direct electrochemical probes of redox protein and redox enzyme structure and functions. In: King TE, Mason HS, Morrison M (eds) Oxidases and related redox systems. Alan R. Liss Inc., New York

    Google Scholar 

  3. Frew JE, Hill HAO (1988) Direct and indirect electron-transfer between electrodes and redox proteins. Eur J Biochem 172:261–269

    Article  CAS  PubMed  Google Scholar 

  4. Frew JE, Hill HAO, Thomas JDR (1987) Electron-transfer Biosensor. Phil Trans R Soc London 316:95–106

    CAS  Google Scholar 

  5. Armstrong FA, Hill HAO, Oliver BN, Whitford D (1985) Direct electrochemistry of the photosynthetic blue copper protein plastocyanin-electrostatic promotion of rapid charge-transfer at an edge-oriented pyrolytic graphite electrode. J Am Chem Soc 107:1473–1476

    Article  CAS  Google Scholar 

  6. Berezin IV, Bogdanovskaya VA, Varfolomeev SD, Tarasevich MR, Iaropolov AI (1978) Bioelectrocatalysis-equilibrium oxygen potential in presence of laccase. Dokl Akad Nauk SSSR 240:615–618 (In Russian)

    CAS  Google Scholar 

  7. Lee CW, Gray HB, Anson FC, Malmström BG (1984) Catalysis of the reduction of dioxygen at graphite electrodes coated with fungal laccase A. J Electroanal Chem 172:289–300

    Article  CAS  Google Scholar 

  8. Guo LH, Hill HAO, Lawrance GA, Sanghera GS, Hopper DJ (1989) Direct un-mediated electrochemistry of the enzyme p-cresolmethylhydroxylase. J Electroanal Chem 266:379–396

    Article  CAS  Google Scholar 

  9. Burrows AL, Hill HAO, Leese TA, McIntire WS, Nakayama H, Sanghera GS (1991) Direct electrochemistry of the enzyme, methylamine dehydrogenase from bacterium W3A1. Eur J Biochem 199:73–78

    Article  CAS  PubMed  Google Scholar 

  10. Ikeda T, Fushimi F, Miki K, Senda M (1988) Direct bioelectrocatalysis at electrodes modified D-gluconate dehydrogenase. Agric Biol Chem 52:2655–2658

    CAS  Google Scholar 

  11. Ikeda T, Matsushita F, Senda M (1991) Amperometric fructose sensor based on direct bioelectrocatalysis. Biosens Bioelectron 6:299–304

    Article  CAS  Google Scholar 

  12. Ikeda T, Miyaoka S, Matsushita F, Kobayashi D, Senda M (1992) Direct bioelectrocatalysis at metal and carbon electrodes modified with adsorbed D-gluconate dehydrogenase or adsorbed alcohol dehydrogenase. Chem Lett 21:847–850

    Article  Google Scholar 

  13. McIntire WS, Wemmer DE, Chistoserdov A, Lidstrom ME (1991) A new cofactor in a prokaryotic enzyme: tryptophan tryptophylquinone as the redox prosthetic group in methylamine dehydrogenase. Science 252:817–824

    Article  CAS  PubMed  Google Scholar 

  14. Ikeda T, Kobayashi D, Matsushita F, Sagara T, Niki K (1993) Bioelectrocatalysis at electrodes coated with alcohol dehydrogenase, a quinohemoprotein with heme c serving as a built-in mediator. J Electroanal Chem 361:221–228

    Article  CAS  Google Scholar 

  15. Milton RD, Minteer SD (2017) Direct enzymatic bioelectrocatalysis: differentiating between myth and reality. J R Soc Interface 14:20170253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Paddock RM, Bowden EF (1989) Electrocatalytic reduction of hydrogen peroxide via direct electron transfer from pyrolytic graphite electrodes to irreversibly adsorbed cytochrome c peroxidase. J Electroanal Chem 172:487–494

    Article  Google Scholar 

  17. Xia HQ, Kitazumi Y, Shirai O, Kano K (2017) Direct electron transfer-type bioelectrocatalysis of peroxidase at mesoporous carbon electrodes and its application for glucose determination based on bienzyme system. Anal Sci 33:839–844

    Article  CAS  PubMed  Google Scholar 

  18. Blanford CF, Heath RS, Armstrong FA (2007) A stable electrode for high-potential, electrocatalytic O2 reduction based on rational attachment of a blue copper oxidase to a graphite surface. Chem Commun 1710–1712

    Google Scholar 

  19. So K, Kitazumi Y, Shirai O, Kano K (2016) Analysis of factors governing direct electron transfer-type bioelectrocatalysis of bilirubin oxidase at modified electrodes. J Electroanal Chem 783:316–323

    Article  CAS  Google Scholar 

  20. Murata K, Kajiya K, Nakamura N, Ohno H (2009) Direct electrochemistry of bilirubin oxidase on three-dimensional gold nanoparticle electrodes and its application in a biofuel cell. Energy Environ. Sci. 2:1280–1285

    Article  CAS  Google Scholar 

  21. Funabashi H, Takeuchi S, Tsujimura S (2017) Hierarchical meso/macro-porous carbon fabricated from dual MgO templates for direct electron transfer enzymatic electrodes. Sci Rep 7:45147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tsujimura S, Miura Y, Kano K (2008) CueO-immobilized porous carbon electrode exhibiting improved performance of electrochemical reduction of dioxygen to water. Electrochim Acta 53:5716–5720

    Article  CAS  Google Scholar 

  23. Wijma HJ, Jeuken LJC, Verbee MP, Armstrong FA, Canters GW (2007) Protein film voltammetry of copper-containing nitrite reductase reveals reversible inactivation. J Am Chem Soc 129:8557–8565

    Article  CAS  PubMed  Google Scholar 

  24. Pershad HR, Duff JLC, Heering HA, Duin EC, Albracht SPJ, Armstrong FA (1999) Catalytic electron transport in chromatium vinosum [NiFe]-hydrogenase: application of voltammetry in detecting redox-active centers and establishing that hydrogen oxidation is very fast even at potentials close to the reversible H+/H2 value. Biochemistry 38:8992–8999

    Article  CAS  PubMed  Google Scholar 

  25. Xia H-Q, So K, Kitazumi Y, Shirai O, Nishikawa K, Higuchi Y, Kano K (2016) Dual gas-diffusion membrane- and mediatorless dihydrogen/air-breathing biofuel cell operating at room temperature. J Power Sources 335:105–112

    Article  CAS  Google Scholar 

  26. So K, Hamamoto R, Takeuchi R, Kitazumi Y, Shirai O, Endo R, Nishihara H, Higuchi Y, Kano K (2016) Bioelectrochemical analysis of thermodynamics of the catalytic cycle and kinetics of the oxidative inactivation of oxygen-tolerant [NiFe]-hydrogenase. J Electroanal Chem 766:152–161

    Article  CAS  Google Scholar 

  27. Goldet G, Brandmayr C, Stripp ST, Happe T, Cavazza C, Fontecilla-Camps JC, Armstrong FA (2009) Electrochemical kinetic investigations of the reactions of [FeFe]-hydrogenases with carbon monoxide and oxygen: comparing the importance of gas tunnels and active-site electronic/redox effects. J Am Chem Soc 131:14979–14989

    Article  CAS  PubMed  Google Scholar 

  28. Shiraiwa S, Kitazumi Y, Shirai O, Higuchi Y, Kano K, Unpublished

    Google Scholar 

  29. Sakai K, Kitazumi Y, Shirai O, Takagi K, Kano K (2017) Direct electron transfer-type four-way bioelectrocatalysis of CO2/formate and NAD+/NADH redox couples by tungsten-containing formate dehydrogenase adsorbed on gold nanoparticle-embedded mesoporous carbon electrodes modified with 4-mercaptopyridine. Electrochem Commun 84:75–79

    Article  CAS  Google Scholar 

  30. Reda T, Plugge CM, Abram NJ, Hirst J (2008) Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc Natl Acad Sci USA 105:10654–10658

    Google Scholar 

  31. Elliott SJ, Hoke KR, Heffron K, Palak M, Rothery RA, Weiner JH, Armstrong FA (2004) Voltammetric studies of the catalytic mechanism of the respiratory nitrate reductase from escherichia coli: how nitrate reduction and inhibition depend on the oxidation state of the active site. Biochemistry 43:799–807

    Article  CAS  PubMed  Google Scholar 

  32. Zu Y, Shannon RJ, Hirst J (2003) Reversible, electrochemical interconversion of NADH and NAD+ by the catalytic (Iλ) subcomplex of mitochondrial NADH: Ubiquinone oxidoreductase (complex I). J Am Chem Soc 125:6020–6021

    Article  CAS  PubMed  Google Scholar 

  33. Léger C, Heffron K, Pershad HR, Maklashina E, Luna-Chavez C, Cecchini G, Ackrell BAC, Armstrong FA (2001) Enzyme electrokinetics: energetics of succinate oxidation by fumarate reductase and succinate dehydrogenase. Biochemistry 40:11234–11245

    Article  PubMed  CAS  Google Scholar 

  34. Parkin A, Seravall J, Vincent KA, Ragsdale SW, Armstrong FA (2007) Rapid and efficient electrocatalytic CO2/CO interconversions by carboxydothermus hydrogenoformans CO dehydrogenase I on an electrode. J Am Chem Soc 129:10328–10329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Heffron K, Léger C, Rothery RA, Weiner JH, Armstrong FA (2001) Determination of an optimal potential window for catalysis by E. coli dimethyl sulfoxide reductase and hypothesis on the role of Mo(V) in the reaction pathway. Biochemistry 40:3117–3126

    Google Scholar 

  36. Hoke KR, Cobb N, Armstrong FA, Hille R (2004) Electrochemical studies of arsenite oxidase: an unusual example of a highly cooperative two-electron molybdenum center. Biochemistry 43:1667–1674

    Article  CAS  PubMed  Google Scholar 

  37. Larsson T, Lindgren A, Ruzgas T, Lindquist S-E, Gorton L (2000) Bioelectrochemical characterisation of cellobiose dehydrogenase modified graphite electrodes: ionic strength and pH dependences. J Electroanal Chem 482:1–10

    Article  CAS  Google Scholar 

  38. Shiota M, Yamazaki T, Yoshimatsu K, Kojima K, Tsugawa W, Ferri S, Sode K (2016) An Fe–S cluster in the conserved Cys-Rich region in the catalytic subunit of FAD-dependent dehydrogenase complexes. Bioelectrochemistry 112:178–183

    Article  CAS  PubMed  Google Scholar 

  39. Kamitaka Y, Tsujimura S, Kano K (2007) High current density bioelectrolysis of d-fructose at fructose dehydrogenase-adsorbed and Ketjen black-modified electrodes without a mediator. Chem Lett 36:218–219

    Article  CAS  Google Scholar 

  40. Murata K, Suzuki M, Kajiya K, Nakamura N, Ohno H (2009) High performance bioanode based on direct electron transfer of fructose dehydrogenase at gold nanoparticle-modified electrodes. Electrochem Commun 11:668–671

    Article  CAS  Google Scholar 

  41. Kalimuthu P, Ringel P, Kruse T, Bernhardt PV (2016) Direct Electrochemistry of nitrate reductase from the fungus Neurospora crassa. Biochim. Biophys Acta Bioenerg 1857:1506–1513

    Article  CAS  Google Scholar 

  42. Tsujimura S, Abo T, Ano Y, Matsushita K, Kano K (2007) Electrochemistry of D-gluconate 2-dehydrogenase from Gluconobacter frateurii on indium tin oxide electrode surface. Chem Lett 36:1164–1165

    Article  CAS  Google Scholar 

  43. Ratautas D, Laurynėnas A, Dagys M, Marcinkevičiė L, Meškys R, Kulys J (2016) High current, low redox potential mediatorless bioanode based on gold nanoparticles and glucose dehydrogenase from Ewingella americana. Electrochim Acta 199:254–260

    Article  CAS  Google Scholar 

  44. Ratautasa D, Tetianec L, Marcinkevičienė L, Meškys R, Kulys J (2017) Bioanode with alcohol dehydrogenase undergoing a direct electron transfer on functionalized gold nanoparticles for an application in biofuel cells for glycerol conversion. Biosens Bioelectron 98:215–221

    Article  CAS  Google Scholar 

  45. Ramanavicius A, Habermüller K, Csöregi E, Laurinavicius V, Schuhmann W, Polypyrrole-entrapped quinohemoprotein alcohol dehydrogenase. Evidence for direct electron transfer via conducting-polymer chains. Anal Chem 71:3581–3586 (1999)

    Google Scholar 

  46. Bradley AL, Chobot SE, Arciero DM, Hooper AB, Elliott SJ (2004) A distinctive electrocatalytic response from the cytochrome c peroxidase of Nitrosomonas europaea. J Biol Chem 279:13297–13300

    Article  CAS  PubMed  Google Scholar 

  47. Siritanaratkul B, Megarity CF, Roberts TG, Samuels TOM, Winkler M, Warner JH, Happe T, Armstrong FA (2017) Transfer of photosynthetic NADP+/NADPH recycling activity to a porous metal oxide for highly specific, electrochemically-driven organic synthesis. Chem Sci 8:4579–4586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tominaga M, Nomura S, Taniguchi I (2008) Bioelectrocatalytic current based on direct heterogeneous electron transfer reaction of glucose oxidase adsorbed onto multi-walled carbon nanotubes synthesized on platinum electrode surfaces. Electrochem Commun 10:888–890

    Article  CAS  Google Scholar 

  49. Flexer V, Durand F, Tsujimura S, Mano N (2011) Efficient direct electron transfer of PQQ-glucose dehydrogenase on carbon cryogel electrodes at neutral pH. Anal Chem 83:5721–5727

    Article  CAS  PubMed  Google Scholar 

  50. Kielb P, Sezer M, Katz S, Lopez F, Schulz C, Gorton L, Ludwig R, Wollenberer U, Zebger I, Weidinger IM (2015) Spectroscopic observation of calcium-nduced reorientation of cellobiose dehydrogenase activity. ChemPhysChem 16:1960–1968

    Article  CAS  PubMed  Google Scholar 

  51. Ivnitski D, Atanassov P, Apblett C (2007) Direct bioelectrocatalysis of PQQ-dependent glucose dehydrogenase. Electroanalysis 19:1562–1568

    Article  CAS  Google Scholar 

  52. Wilson GS (2016) Native glucose oxidase does not undergo direct electron transfer. Biosens Bioelectron 82:vii–viii

    Google Scholar 

  53. Bartlett PN, Al-Lolage FA (2018) There is no evidence to support literature claims of direct electron transfer (DET) for native glucose oxidase (GOx) at carbon nanotubes or graphene. J Electroanal Chem 819:26–37

    Article  CAS  Google Scholar 

  54. Sakai K, Sugimoto Y, Kitazumi Y, Shirai O, Takagi K, Kano K (2017) Direct electron transfer-type bioelectrocatalytic interconversion of carbon dioxide/formate and NAD+/NADH redox couples with Tungsten-containing formate dehydrogenase. Electrochim Acta 228:537–544

    Article  CAS  Google Scholar 

  55. Sato A, Takagi K, Kano K, Kato N, Duine JA, Ikeda T (2001) Ca2+ stabilizes the semiquinone radical of pyrroloquinoline quinone. Biochem J 357:893–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yehezkeli O, Raichlin S, Tel-Vered R, Kesselman E, Danino D, Willner I (2010) Biocatalytic implant of Pt nanoclusters into glucose oxidase: a method to electrically wire the enzyme and to transform it from an oxidase to a hydrogenase. J Phys Chem Lett 1:2816–2819

    Article  CAS  Google Scholar 

  57. Trifonov A, Stemmer A, Tel-Vered R (2019) Enzymatically self-wiring in nanopores and its application in direct electron transfer biofuel cells. Nanoscale Adv 1:347–356

    Article  CAS  Google Scholar 

  58. Muguruma H, Iwasa H, Hidaka H, Hiratsuka A, Uzawa H (2016) Mediatorless direct electron transfer between flavin adenine dinucleotide-dependent glucose dehydrogenase and single-walled carbon nanotubes. ACS Catal 7:725–734

    Article  CAS  Google Scholar 

  59. Adachi T, Fujii T, Honda M, Kitazumi Y, Shirai O, Kano K (2020) Direct electron transfer-type bioelectrocatalysis of FAD-dependent glucose dehydrogenase using porous gold electrodes and enzymatically implanted platinum nanoclusters. Bioelectrochemistry 133:107457

    Article  CAS  PubMed  Google Scholar 

  60. He B, Sinclair R, Copeland BR, Makino R, Powers LS, Yamazaki I (1996) The structure−function relationship and reduction potentials of high oxidation states of myoglobin and peroxidase. Biochemistry 25:2413–2420

    Article  Google Scholar 

  61. Farhangrazi ZS, Fossett ME, Powers LS, Ellis Jr WR (1995) Variable-temperature spectroelectrochemical study of horseradish peroxidase. Biochemistry 34:2866–2871

    Google Scholar 

  62. Jönsson G, Gorton L (1989) An electrochemical sensor for hydrogen peroxide based on peroxidase adsorbed on a spectrographic graphite electrode. Electroanalysis 5:465–468

    Article  Google Scholar 

  63. Bogdanovskay VA, Fridman VA, Tarasevich MR, Scheller F (1994) Bioelectrocatalysis by immobilized peroxidase: the reaction mechanism and the possibility of electroanalytical detection of both inhibitors and activators of enzyme. Anal Lett 27:2823–2847

    Article  Google Scholar 

  64. Ferapontova EE, Gorton L (2001) Effect of proton donors on direct electron transfer in the system gold electrode-horseradish peroxidase. Electrochem Commun 3:767–774

    Article  CAS  Google Scholar 

  65. Ferapontova E, Puganova E (2002) Effect of pH on direct electron transfer between graphite and horseradish peroxidase. J Electroanal Chem 51:20–26

    Article  Google Scholar 

  66. Ferapontova E (2004) Direct peroxidase bioelectrocatalysis on a variety of electrode materials. Electroanalysis 16:1101–1112

    Article  CAS  Google Scholar 

  67. Sugimoto Y, Kitazumi Y, Shirai O, Kano K (2017) Effects of mesoporous structures on direct electron transfer-type bioelectrocatalysis: facts and simulation on a three-dimensional model of random orientation of enzymes. Electrochemistry 85:82–87

    Article  CAS  Google Scholar 

  68. Marcus RA (1964) Chemical and electrochemical electron-transfer theory. Annu Rev Phys Chem 15:155–156

    Article  CAS  Google Scholar 

  69. Marcus RA (1993) Electron transfer reactions in chemistry: theory and experiment (nobel lecture). Angew Chem Int Ed 32:1111–1121

    Article  Google Scholar 

  70. Gray HB, Winkler JR (2005) Long-range electron transfer. Proc Natl Acad Sci USA 102:3534–3539

    Google Scholar 

  71. Moser CC, Keske JM, Warncke K, Farid RS, Dutton PL (1992) Nature of biological electron transfer. Nature 355:796–802

    Article  CAS  PubMed  Google Scholar 

  72. Léger C, Jones AK, Albracht SPJ, Armstrong FA (2002) Effect of a dispersion of interfacial electron transfer rates on steady state catalytic electron transport in [NiFe]-hydrogenase and other enzymes. J Phys Chem B 106:13058–13063

    Article  CAS  Google Scholar 

  73. Léger C, Bertrand P (2008) Direct electrochemistry of redox enzymes as tool for mechanistic studies. Chem Rev 108:2379–2438

    Article  PubMed  CAS  Google Scholar 

  74. Sugimoto Y, Takeuchi R, Kitazumi Y, Shirai O, Kano K (2016) Significance of mesoporous electrodes for noncatalytic faradaic process of randomly oriented redox proteins. J Phys Chem C 120:26270–26277

    Article  CAS  Google Scholar 

  75. Sensi M, del Barrio M, Baffert C, Fourmond V, Léger C (2017) New perspectives in hydrogenase direct electrochemistry. Curr Opin Electrochem 5:135–145

    Article  CAS  Google Scholar 

  76. Xia H-Q, Kitazumi Y, Shirai O, Kano K (2016) Enhanced direct electron transfer-type bioelectrocatalysis of bilirubin oxidase on negatively charged aromatic compound-modified carbon electrode. J Electroanal Chem 763:104–109

    Article  CAS  Google Scholar 

  77. Xia H-Q, Hibino Y, Kitazumi Y, Shirai O, Kano K (2016) Interaction between d-fructose dehydrogenase and methoxy-substituent-functionalized carbon surface to increase productive orientations. Electrochim Acta 218:41–46

    Article  CAS  Google Scholar 

  78. Kaida Y, Hibino Y, Kitazumi Y, Shirai O, Kano K (2019) Ultimate downsizing of D-fructose dehydrogenase for improving the performance of direct electron transfer-type bioelectrocatalysis. Electrochem Commun 98:101–105

    Article  CAS  Google Scholar 

  79. Takahashi Y, Kitazumi Y, Shirai O, Kano K (2019) Improved Direct electron transfer-type bioelectrocatalysis of bilirubin oxidase using thiol-modified gold nanoparticles on mesoporous carbon electrode. J Electroanal Chem 832:158–164

    Article  CAS  Google Scholar 

  80. So K, Kitazumi Y, Shirai O, Kurita K, Nishihara H, Higuchi Y, Kano K (2014) Kinetic analysis of inactivation and enzyme reaction of oxygen-tolerant [NiFe]-hydrogenase at direct electron-transfer bioanode. Bull. Chem. Soc. Jpn. 87:1177–1185

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Kano .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kano, K., Shirai, O., Kitazumi, Y., Sakai, K., Xia, HQ. (2021). Fundamentals of DET-Type Bioelectrocatalysis. In: Enzymatic Bioelectrocatalysis. Springer, Singapore. https://doi.org/10.1007/978-981-15-8960-7_3

Download citation

Publish with us

Policies and ethics