Skip to main content

Redox Proteins and Bioelectrocatalysis

  • Chapter
  • First Online:
Enzymatic Bioelectrocatalysis

Abstract

This chapter starts by introducing the basic feature and thermodynamics of redox proteins including redox enzymes (oxidoreductases). Biochemical properties of organic and inorganic redox components in redox enzymes are detailed, and they are very important to understand bioelectrocatalysis. This chapter also introduces the basic concept of bioelectrocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bugg TDH (2014) Introduction to enzyme and coenzyme chemistry, 2nd edn, Chap 6. Blackwell Publishing, Oxford

    Google Scholar 

  2. Sinnot M (1998) Comprehensive biological catalysis (a mechanistic reference), vol III, Chap 28. Academic Press, London

    Google Scholar 

  3. Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive earth’s biogeochemical cycles. Science 320:1034–1039

    Article  CAS  Google Scholar 

  4. https://www.qmul.ac.uk/sbcs/iubmb/enzyme/

  5. Clark AR, Dafforn TR (1998) NAD+ and NADP-linked reactions. In: Sinnot M (ed) Comprehensive biological catalysis (a mechanistic reference), vol III, Chap 28. Academic Press, London

    Google Scholar 

  6. Palfey BA, Massey V (1998) Flavin-dependent enzymes. In: Sinnot EM (ed) Comprehensive biological catalysis (a mechanistic reference), vol III, Chap 29. Academic Press, London

    Google Scholar 

  7. Bartlett PN (2008) Bioelectrochemistry (fundamentals, experimental techniques and applications). Wiley

    Google Scholar 

  8. Edmondson DE, Francesco RD (1991) Muller F (ed) Chemistry and biochemistry of flavoenzymes. CRC Press, Boca Raton, pp 73–103

    Google Scholar 

  9. Decker KF (1993) Biosynthesis and function of enzymes with covalently bound flavin. Annu Rev Nutr 13:17–41

    Article  CAS  Google Scholar 

  10. Fujieda N, Satoh A, Tsuse N, Kano K, Ikeda T (2004) 6-S-cysteinyl flavin mononucleotide-containing histamine dehydrogenase from Nocardioides simplex: molecular cloning, sequencing, over-expression and characterization of redox centers of enzyme. Biochemistry 43:10800–10808

    Article  CAS  Google Scholar 

  11. Tatsumi H, Nakase H, Kano K, Ikeda T (1998) Mechanistic study of the autoxidation of reduced flavin and quinone compounds. J Electroanal Chem 443:236–242

    Article  CAS  Google Scholar 

  12. Anthony C (1998) Quinoprotein-catalyzed reactions. In: Sinnot M (1998) Comprehensive biological catalysis (a mechanistic reference), vol III, Chap 30. Academic Press, London (1998)

    Google Scholar 

  13. Westerling J, Frank J, Duine FA (1979) The prosthetic group of methanol dehydrogenase from Hyphomicrobium X: electron spin resonance evidence for a quinone structure. Biochem Biophys Res Commun 87:719–724

    Article  CAS  Google Scholar 

  14. Salisbury SA, Forrest HS, Cruse WBT, Kennard O (1979) A novel coenzyme from bacterial primary alcohol dehydrogenases. Nature 280:843–844

    Article  CAS  Google Scholar 

  15. Kano K, Mori K, Uno B, Kubota T, Ikeda T, Senda M (1990) Voltammetric and spectroscopic studies of pyrroloquinoline quinone coenzyme under neutral and basic conditions. Bioelectrochem Bioenerg 23:227–238

    Article  CAS  Google Scholar 

  16. Janes SM, Mu D, Wemmer D, Smith AJ, Kaur S, Maltby D, Burlingame AL, Klinman JP (1990) A new redox cofactor in eukaryotic enzymes: 6-hydroxydopa at the active site of bovine serum amine oxidase. Science 248:981–987

    Article  CAS  Google Scholar 

  17. McIntire WS, Wemmer DE, Chistoserdov A, Lidstrom ME (1991) A new cofactor in a prokaryotic enzyme: tryptophan tryptophylquinone as the redox prosthetic group in methylamine dehydrogenase. Science 252:817–824

    Article  CAS  Google Scholar 

  18. Wang S-X, Mure M, Medzihradszky KF, Burlingame AL, Brown DE, Dooley DM, Smith AJ, Kagan HM, Klinman JP (1996) A crosslinked cofactor in lysyl oxidase: redox function for amino acid side chains. Science 273:1078–1084

    Article  CAS  Google Scholar 

  19. Datta S, Mori Y, Takagi Y, Kawaguchi Z-W, Okajima CT, Kuroda S, Ikeda T, Kano K, Tanizawa K, Mathews FS (2001) Structure of a quinohemoprotein amine dehydrogenase with an uncommon redox cofactor and highly unusual crosslinking. Proc Natl Acad Sci, USA 98:14268–14273

    Google Scholar 

  20. van Kleef MAG, Jongejan JA, Duine JA (1989) Factors relevant in the reaction of pyrroloquinoline quinone with amino acids. Eur J Biochem 183:43–47

    Google Scholar 

  21. Esaka Y, Goto YM, Kano K (1994) Kinetic analysis of oxalopyrroloquinoline formation in the reaction of coenzyme PQQ with amino acids by capillary zone electrophoresis. J Chem Soc Perkin Trans 2:2163–2167

    Google Scholar 

  22. Fujieda N, Mori M, Ikeda T, Kano K (2009) The silent form of quinohemoprotein amine dehydrogenase from paracoccus denitrificans. Biosci Biotechnol Biochem 73:524–529

    Article  CAS  Google Scholar 

  23. Kano K, Mori K, Uno B, Kubota T, Ikeda T, Senda M (1990) Voltammetric determination of acid dissociation constants of pyrroloquinoline quinone and its reduced form under acidic conditions. Bioelectrochem Bioenerg 24:193–201

    Article  CAS  Google Scholar 

  24. Kano K, Mori K, Uno B, Goto M (1990) Voltammetric and spectroscopic properties of the ammonia adduct of pyrroloquinoline quinone. J Electroanal Chem 293:177–184

    Article  CAS  Google Scholar 

  25. Kano K, Mori T, Uno B, Goto M, Ikeda T (1993) Characterization of topa quinone cofactor. Biochim Biophys Acta 1157:324–331

    Article  CAS  Google Scholar 

  26. Itoh S, Ogino M, Haranou S, Terasaka T, Ando T, Komatsu M, Ohshiro Y, Fukuzumi S, Kano K, Takagi K, Ikeda T (1995) A model compound of novel cofactor tryptophan tryptophylquinone of bacterial methylamine dehydrogenases. Synthesis and physicochemical properties. J Am Chem Soc 117:1485–1493

    Google Scholar 

  27. Murakami Y, Yoshimoto N, Fujieda N, Ohkubo K, Hasegawa T, Kano K, Fukuzumi S, Itoh S (2007) Model studies of 6,7-indolequinone cofactors of quinohemoprotein amine dehydrogenases. J Org Chem 72:3369–3380

    Article  CAS  Google Scholar 

  28. Sato A, Takagi K, Kano K, Kato N, Duine JA, Ikeda T (2001) Ca2+ stabilizes the semiquinone radical of pyrroloquinoline quinone. Biochem J 357:893–898

    Article  CAS  Google Scholar 

  29. Fujieda N, Mori M, Kano K, Ikeda T (2002) Spectroelectrochemical evaluation of redox potentials of cysteine tryptophylquinone and two hemes c in quinohemoprotein amine dehydrogenase from Paracoccus denitrificans. Biochemistry 41:13736–13743

    Article  CAS  Google Scholar 

  30. Dunford HB (1998) Heme enzymes. In: Sinnot M (ed) Comprehensive biological catalysis (a mechanistic reference), vol III, Chap 32. Academic Press, London

    Google Scholar 

  31. Harel A, Bromberg Y, Falkowski PG, Bhattacharya D (2014) Evolutionary history of redox metal-binding domains across the tree of life. Proc Natl Acad Sci USA 111:7042–7047

    Article  CAS  Google Scholar 

  32. Wuttle DS, Gray HB (1993) Protein engineering as a tool for understanding electron transfer. Curr Opin Struct Biol 3:555–563

    Article  Google Scholar 

  33. Messerschmidt A (1998) Copper metalloenzymes. In: Sinnot M (ed) Comprehensive biological catalysis (a mechanistic reference), vol III, Chap 38. Academic Press, London

    Google Scholar 

  34. Tsujimura S, Kuriyama A, Fujieda N, Kano K, Ikeda T (2005) Mediated spectroelectrochemical titration of proteins for redox potential measurements by a separator-less one-compartment bulk electrolysis method. Anal Biochem 337:325–331

    Article  CAS  Google Scholar 

  35. Reinhammar BRM (1972) Oxidation-reduction potentials of the electron acceptors in laccases and stellacyanin. Biochim Biophys Acta 275:245–259

    Article  CAS  Google Scholar 

  36. Kamitaka Y, Tsujimura S, Kataoka K, Sakurai T, Ikeda T, Kano K (2007) Effects of axial ligand mutation of the type I copper site in bilirubin oxidase on direct electron transfer-type bioelectrocatalytic reduction of dioxygen. J Electroanal Chem 601:119–124

    Article  CAS  Google Scholar 

  37. Kurose S, Kataoka K, Shinohara N, Miura Y, Tsutsumi M, Tsujimura S, Kano K, Sakurai T (2009) Modification of spectroscopic properties and catalytic activity of escherichia coli CueO by mutations of methionine 510, the axial ligand to type I Cu. Bull Chem Soc Jpn 82:504–508

    Article  CAS  Google Scholar 

  38. Durã P, Chen Z, Silva CS, Soares CM, Pereira MM, Todorovic S, Hildebrandt P, Bento I, Lindley PF, Martins LO (2008) Proximal mutations at the type 1 copper site of CotA laccase: spectroscopic, redox, kinetic and structural characterization of I494A and L386A mutants. Biochem J 412:339–346

    Article  Google Scholar 

  39. Halcrow MA (1998) Nickel-dependent redox enzymes. In: Sinnot M (ed) Comprehensive biological catalysis (a mechanistic reference), vol III, Chap 38. Academic Press, London

    Google Scholar 

  40. Ogata H, Lubits W, Higuchi Y (2016) Structure and function of [NiFe] hydrogenase. J Biochem 160:251–258

    Article  CAS  Google Scholar 

  41. Baugh PE, Collison D, Garner CD, Joule JA (1998) Molybdenum metalloenzymes. In: Sinnot M (ed) comprehensive biological catalysis (a mechanistic reference), vol III, Chap 38. Academic Press, London

    Google Scholar 

  42. Barton SC, Gallaway J, Atanassov P (2004) Enzymatic biofuel cells for implantable and microscale devices. Chem Rev 104:4867–4886

    Article  CAS  Google Scholar 

  43. Heller A Potentially implantable miniature batteries. Anal Bioanal Chem 385, f

    Google Scholar 

  44. Léger C, Bertrand P (2008) Direct electrochemistry of redox enzymes as tool for mechanistic studies. Chem Rev 108:2379–2438

    Article  Google Scholar 

  45. Cracknell JA, Vincent KA, Armstrong FA (2008) Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem Rev 108:2439–2461

    Article  CAS  Google Scholar 

  46. Willner I, Yan YM, Willner B, Tel-Vered R (2009) Integrated enzyme-based biofuel cells-A review. Fuel Cells 9:7–24

    Article  CAS  Google Scholar 

  47. Armstrong FA, Hirst J (2011) Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes. Proc Natl Acad Sci, USA 108:14049–14054

    Google Scholar 

  48. Leech D, Kavanagh P, Schuhmann W (2012) Enzymatic fuel cells: recent progress. Electrochim Acta 84:223–234

    Article  CAS  Google Scholar 

  49. de Poulpiquet A, Ranava D, Monsalve K, Giudici-Orticoni MT, Lojou E (2014) Biohydrogen for a new generation of H2/O2 biofuel cells: a sustainable energy perspective. ChemElectroChem 1:1724–1750

    Google Scholar 

  50. Rasmussen M, Abdellaoui S, Minteer SD (2016) Enzymatic biofuel cells: 30 years of critical advancements. Biosens Bioelectron 76:91–102

    Article  CAS  Google Scholar 

  51. Fourmond V, Léger C (2017) Modelling the voltammetry of adsorbed enzymes and molecular catalysts. Curr Opin Electrochem 1:110–120

    Article  CAS  Google Scholar 

  52. Schuhmann W, Plumeré N (2017) Bioelectrochemistry. From the recent past into new challenges. Curr Opin Electrochem 5:63–65

    Google Scholar 

  53. Mazurenko I, de Poulpiquet A, Lojou E (2017) Recent developments in high surface area bioelectrodes for enzymatic fuel cells. Curr Opin Electrochem 5:74–84

    Article  CAS  Google Scholar 

  54. Milton RD, Minteer SD (2017) Enzymatic bioelectrosynthetic ammonia production: recent electrochemistry of nitrogenase, nitrate reductase nitrite reductase. ChemPlusChem 82:513–521

    Article  CAS  Google Scholar 

  55. Sensi M, del Barrio M, Baffert C, Fourmond V, Léger C (2017) New perspectives in hydrogenase direct electrochemistry. Curr Opin Electrochem 5:135–145

    Article  CAS  Google Scholar 

  56. Mano N, de Poulpiquet A (2018) O2 reduction in enzymatic biofuel cells. Chem Rev 118:2392–2468

    Google Scholar 

  57. Yamada Y, Aida K, Uemura T (1968) Coenzyme Q10 in the respiratory linked to fructose dehydrogenase from Gluconobacter cerinus. Agric Biol Chem 32:532–534

    Article  CAS  Google Scholar 

  58. Kamitaka Y, Tsujimura S, Kano K (2007) High current density bio-electrolysis of D-fructose at fructose dehydrogenase-adsorbed and ketjen black-modified electrodes without a mediator. Chem Lett 36:218–219

    Article  CAS  Google Scholar 

  59. Tsujimura S, Nakagawa T, Kano K, Ikeda T (2004) Kinetic study of direct bioelectrocatalysis of dioxygen reduction with bilirubin oxidase at carbon electrodes. Electrochemistry 72:437–439

    Article  CAS  Google Scholar 

  60. Xia HQ, Kitazumi Y, Shirai O, Kano K (2017) Direct electron transfer-type bioelectrocatalysis of peroxidase at mesoporous carbon electrodes and its application for glucose determination based on bienzyme system. Anal Sci 33:839–844

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Kano .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kano, K., Shirai, O., Kitazumi, Y., Sakai, K., Xia, HQ. (2021). Redox Proteins and Bioelectrocatalysis. In: Enzymatic Bioelectrocatalysis. Springer, Singapore. https://doi.org/10.1007/978-981-15-8960-7_1

Download citation

Publish with us

Policies and ethics