Skip to main content

Head-AR: Human Activity Recognition with Head-Mounted IMU Using Weighted Ensemble Learning

  • Chapter
  • First Online:
Activity and Behavior Computing

Abstract

This paper describes the machine learning (ML) method Head-AR, which achieved the highest performance in a competition with 11 other algorithms and won the Emteq Activity Recognition challenge. The goal of the challenge was to recognize eight activities of daily life from a device mounted on the head, which provided data from a 3-axis IMU: accelerometer, gyroscope, and magnetometer. The challenge dataset was collected by four subjects, of which one subject was used as a test for the challenge evaluation. The method processes the stream of sensors data and recognizes one of the eight activities every two seconds. The method is based on weighted ensemble learning, which combines three models: (i) a dynamic time warping classification model, which analyzes raw accelerometer data; (ii) a classification model that uses expert features; (iii) and a classification model that uses features selected by a feature selection algorithm. To compute the final output, the predictions of the three models are combined using a novel weighing scheme. The method achieved an F1-score of 61.25% on the competition’s evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Emteq Ltd: https://emteq.net.

  2. 2.

    https://sites.google.com/up.edu.mx/challenge-up-2019.

  3. 3.

    https://abc-research.github.oio/cook2020/.

  4. 4.

    https://github.com/simon2706/Emteq-ARC2019.

  5. 5.

    https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html.

References

  1. Kozina, S., Gjoreski, H., Gams, M., Lustrek, M.: Three-layer activity recognition combining domain knowledge and meta-classification author list. J. Med. Biol. Eng. 33, 406–414 (2013)

    Article  Google Scholar 

  2. Janko, V., Gjoreski, M., Slapničar, G., Mlakar, M., Reščič, N., Bizjak, J., Drobnič, V., Marinko, M., Mlakar, N., Gams, M., et al.: Winning the sussex-huawei locomotion-transportation recognition challenge. Human Activity Sensing, pp. 233–250. Springer, Berlin (2019)

    Chapter  Google Scholar 

  3. Gjoreski, M., Luštrek, M., Gams, M., Gjoreski, H.: Monitoring stress with a wrist device using context. J. Biomed. Inf. 73, 159–170 (2017)

    Article  Google Scholar 

  4. Wang, L., Gjoreskia, H., Murao, K., Okita, T., Roggen, D.: Summary of the sussex-huawei locomotion-transportation recognition challenge. In: Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, pp. 1521–1530 (2018)

    Google Scholar 

  5. Wang, L., Gjoreski, H., Ciliberto, M., Lago, P., Murao, K., Okita, T., Roggen, D.: Summary of the sussex-huawei locomotion-transportation recognition challenge 2019. In: Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, pp. 849–856 (2019)

    Google Scholar 

  6. Gjoreski, H., Kaluža, B., Gams, M., Milić, R., Luštrek, M.: Context-based ensemble method for human energy expenditure estimation. Appl. Soft Comput. 37, 960–970 (2015)

    Article  Google Scholar 

  7. Gjoreski, H., Gams, M., Lutrek, M.: Human activity recognition: From controlled lab experiments to competitive live evaluation. In: 2015 IEEE International Conference on Data Mining Workshop (ICDMW), pp. 139–145. IEEE (2015)

    Google Scholar 

  8. Kozina, S., Gjoreski, H., Gams, M., Luštrek, M.: Efficient activity recognition and fall detection using accelerometers. In: International Competition on Evaluating AAL Systems Through Competitive Benchmarking, pp. 13–23. Springer (2013)

    Google Scholar 

  9. Gjoreski, H., Stankoski, S., Kiprijanovska, I., Nikolovska, A., Mladenovska, N., Trajanoska, M., Velichkovska, B., Gjoreski, M., Lustrek, M., Gams, M.: Wearable Sensors Data-Fusion and Machine-Learning Method for Fall Detection and Activity Recognition, pp. 81–96 (2020)

    Google Scholar 

  10. Lara, O.D., Labrador, M.A.: A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutor. 15(3), 1192–1209 (2012)

    Google Scholar 

  11. Arif, M., Bilal, M., Kattan, A., Iqbal Ahamed, S.: Better physical activity classification using smartphone acceleration sensor. J. Med. Syst. 38(9), 95 (2014)

    Google Scholar 

  12. Weng, S., Xiang, L., Tang, W., Yang, H., Zheng, L., Lu, H., Zheng, H.: A low power and high accuracy mems sensor based activity recognition algorithm. In: 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 33–38. IEEE (2014)

    Google Scholar 

  13. Zappi, P., Stiefmeier, T., Farella, E., Roggen, D., Benini, L., Troster, G.: Activity recognition from on-body sensors by classifier fusion: sensor scalability and robustness. In: 2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information, pp. 281–286. IEEE (2007)

    Google Scholar 

  14. Zeng, M., Nguyen, L.T., Yu, B., Mengshoel, O.J., Zhu, J., Wu, P., Zhang, J.: Convolutional neural networks for human activity recognition using mobile sensors. In: 6th International Conference on Mobile Computing, Applications and Services, pp. 197–205. IEEE (2014)

    Google Scholar 

  15. Inoue, M., Inoue, S., Nishida, T.: Deep recurrent neural network for mobile human activity recognition with high throughput. Artif. Life Robot. 23(2), 173–185 (2018)

    Article  Google Scholar 

  16. Francisco Javier Ordóñez and Daniel Roggen: Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition. Sensors 16(1), 115 (2016)

    Google Scholar 

  17. Wang, J., Chen, Y., Hao, S., Peng, X., Lisha, H.: Deep learning for sensor-based activity recognition: a survey. Pattern Recognit. Lett. 119, 3–11 (2019)

    Article  Google Scholar 

  18. Hammerla, N.Y., Halloran, S., Plötz, T.: Deep, convolutional, and recurrent models for human activity recognition using wearables (2016). arXiv:1604.08880

  19. Chernbumroong, S., Atkins, A.S., Yu, H.: Activity classification using a single wrist-worn accelerometer. In: 2011 5th International Conference on Software, Knowledge Information, Industrial Management and Applications (SKIMA) Proceedings, pp. 1–6. IEEE (2011)

    Google Scholar 

  20. Plötz, T., Hammerla, N.Y., Olivier, P.L.: Feature learning for activity recognition in ubiquitous computing. In: Twenty-Second International Joint Conference on Artificial Intelligence (2011)

    Google Scholar 

  21. McCarthy, M.W., James, D.A., Lee, J.B., Rowlands, D.D.: Decision-tree-based human activity classification algorithm using single-channel foot-mounted gyroscope. Electron. Lett. 51(9), 675–676 (2015)

    Google Scholar 

  22. Ravi, N., Dandekar, N., Mysore, P., Littman, M.L.: Activity recognition from accelerometer data. In: Aaai, vol. 5, pp. 1541–1546 (2005)

    Google Scholar 

  23. Li, A., Ji, L., Wang, S., Wu, J.: Physical activity classification using a single triaxial accelerometer based on hmm (2010)

    Google Scholar 

  24. Loh, D., Lee, T.J., Zihajehzadeh, S., Hoskinson, R., Park, E.J.: Fitness activity classification by using multiclass support vector machines on head-worn sensors. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 502–505. IEEE (2015)

    Google Scholar 

  25. Ishimaru, S., Kunze, K., Uema, Y., Kise, K., Inami, M., Tanaka, K.: Smarter eyewear: using commercial eog glasses for activity recognition. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, pp. 239–242 (2014)

    Google Scholar 

  26. Zhang, R., Amft, O.: Monitoring chewing and eating in free-living using smart eyeglasses. IEEE J. Biomed. Health Inf. 22(1), 23–32 (2017)

    Article  Google Scholar 

  27. Farooq, M., Sazonov, E.: Accelerometer-based detection of food intake in free-living individuals. IEEE Sens. J. 18(9), 3752–3758 (2018)

    Article  Google Scholar 

  28. Roggen, D., Calatroni, A., Rossi, M., Holleczek, T., Förster, K., Tröster, G., Lukowicz, P., Bannach, D., Pirkl, G., Ferscha, A., et al.: Collecting complex activity datasets in highly rich networked sensor environments. In: 2010 Seventh International Conference on Networked Sensing Systems (INSS), pp. 233–240. IEEE (2010)

    Google Scholar 

  29. Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: 2012 16th International Symposium on Wearable Computers, pp. 108–109. IEEE (2012)

    Google Scholar 

  30. Gjoreski, M., Janko, V., Slapničar, G., Mlakar, M., Reščič, N., Bizjak, J., Drobnič, V., Marinko, M., Mlakar, N., Luštrek, M., et al.: Classical and deep learning methods for recognizing human activities and modes of transportation with smartphone sensors. Inf. Fusion (2020)

    Google Scholar 

  31. Xing, S., Tong, H., Ji, P.: Activity recognition with smartphone sensors. Tsinghua Sci. Technol. 19(3), 235–249 (2014)

    Article  Google Scholar 

  32. Mitsa, T.: Temporal Data Mining. Chapman and Hall/CRC (2010)

    Google Scholar 

  33. Ross Quinlan, J.: Improved use of continuous attributes in c4. 5. J. Artif. Intell. Res. 4, 77–90 (1996)

    Google Scholar 

  34. Ho, T.K.: Random decision forests. In: Proceedings of 3rd International Conference on Document Analysis and Recognition, vol. 1, pp. 278–282. IEEE (1995)

    Google Scholar 

  35. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education Limited, Malaysia (2016)

    Google Scholar 

  36. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6(1), 37–66 (1991)

    Google Scholar 

  37. Cristianini, N., Shawe-Taylor, J., et al.: An Introduction to Support Vector Machines and other Kernel-based Learning Methods. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  38. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  39. Freund, Y., Schapire, R.E.: A desicion-theoretic generalization of on-line learning and an application to boosting. In: European Conference on Computational Learning Theory, pp. 23–37. Springer (1995)

    Google Scholar 

  40. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system acm sigkdd international conference on knowledge discovery and data mining. ACM, pp. 785–794 (2016)

    Google Scholar 

  41. Van Asch, V.: Macro-and micro-averaged evaluation measures [[basic draft]]. Belgium: CLiPS, vol. 49 (2013)

    Google Scholar 

  42. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  43. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)

    Google Scholar 

  44. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using rnn encoder-decoder for statistical machine translation (2014). arXiv:1406.1078

  45. Nguyen-Dinh, L.-V., Roggen, D., Calatroni, A., Tröster, G.: Improving online gesture recognition with template matching methods in accelerometer data. In: 2012 12th International Conference on Intelligent Systems Design and Applications (ISDA), pp. 831–836. IEEE (2012)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hristijan Gjoreski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gjoreski, H. et al. (2021). Head-AR: Human Activity Recognition with Head-Mounted IMU Using Weighted Ensemble Learning. In: Ahad, M.A.R., Inoue, S., Roggen, D., Fujinami, K. (eds) Activity and Behavior Computing. Smart Innovation, Systems and Technologies, vol 204. Springer, Singapore. https://doi.org/10.1007/978-981-15-8944-7_10

Download citation

Publish with us

Policies and ethics