Skip to main content

Micromechanical Models of PVA-Based Bionanocomposite Films

  • Chapter
  • First Online:
Multiscaled PVA Bionanocomposite Films
  • 159 Accesses

Abstract

To investigate the effect of the interphase on elastic modulus of bulk bionanocomposite films, a theoretical framework was proposed for the first time to systematically calculate interphase volume fraction according to stereological theory and nearest-surface distribution functions in this chapter. A three-phase composite model was employed based on hard-core-soft-shell structures including hard monodispersed or polydispersed anisotropic particles, as well as soft interphase and matrices. The effective volume fraction of nanoparticles was estimated in a simple theoretical approach by considering both volume fraction and geometric configuration of interphases. Experimentally determined tensile moduli of polyvinyl alcohol (PVA)-based bionanocomposite films were predicted by using Halpin–Tsai model and Mori–Tanaka model in which effective volume fraction of randomly oriented nanoparticles resulted from the inclusion of interphase properties and volume fractions. Moreover, associated results suggested that the estimation of elastic modulus according to effective volume fraction revealed much better agreement with experimental data, as opposed to that based on nominal volume fraction. In particular, the use of polydispersed nanodiameter bamboo charcoals (NBCs), halloysite nanotubes (HNTs) and Cloisite 30B clays with Fuller particulate gradation was proven to show the best prediction with experimental data among all proposed theoretical models.

This chapter takes partial content materials from authors’ published research article ‘Mousa M, Dong Y (2020) Towards sophisticated 3D interphase modelling of advanced bionanocomposites via atomic force microscopy, J Nanomater, Article ID 4526108’ under Creative Commons Attribution License.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Halpin Affdl JC, Kardos J (1976) The Halpin-Tsai equations: a review. Polym Eng Sci 16(5):344–352

    Article  Google Scholar 

  2. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574

    Article  Google Scholar 

  3. Zare Y, Garmabi H (2014) Attempts to simulate the modulus of polymer/carbon nanotube nanocomposites and future trends. Polym Rev 54(3):377–400

    Article  Google Scholar 

  4. Hu K, Gupta MK, Kulkarni DD, Tsukruk VV (2013) Ultra-robust graphene oxide-silk fibroin nanocomposite membranes. Adv Mater 25(16):2301–2307

    Article  Google Scholar 

  5. Sisakht Mohsen R, Saied NK, Ali Z, Hosein EM, Hasan P (2009) Theoretical and experimental determination of tensile properties of nanosized and micron-sized CaCO3/PA66 composites. Polym Compos 30(3):274–280

    Article  Google Scholar 

  6. Zare Y (2016) Development of simplified Tandon-Weng solutions of Mori-Tanaka theory for Young’s modulus of polymer nanocomposites considering the interphase. J Appl Polym Sci 133(33):43816

    Article  Google Scholar 

  7. Zare Y (2016) The roles of nanoparticles accumulation and interphase properties in properties of polymer particulate nanocomposites by a multi-step methodology. Compos Part A: Appl Sci Manuf 91:127–132

    Article  Google Scholar 

  8. Dwivedi H, Mathur RB, Dhami TL, Bahl OP, Monthioux M, Sharma SP (2006) Evidence for the benefit of adding a carbon interphase in an all-carbon composite. Carbon 44(4):699–709

    Article  Google Scholar 

  9. Mousa M, Dong Y (2018) Novel three-dimensional interphase characterisation of polymer nanocomposites using nanoscaled topography. Nanotechnology 29(38):385701

    Article  Google Scholar 

  10. Tandon GP, Weng GJ (1984) The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites. Polym Compos 5(4):327–333

    Article  Google Scholar 

  11. Chen B, Evans JR (2006) Nominal and effective volume fractions in polymer-clay nanocomposites. Macromolecules 39(5):1790–1796

    Article  ADS  Google Scholar 

  12. Van Es MA (2001). Polymer-clay nanocomposites: the importance of particle dimensions. Ph.D. thesis, Delft University of Technology, Netherlands

    Google Scholar 

  13. Wan C, Chen B (2012) Reinforcement and interphase of polymer/graphene oxide nanocomposites. J Mater Chem 22(8):3637–3646

    Article  Google Scholar 

  14. Wan C, Frydrych M, Chen B (2011) Strong and bioactive gelatin–graphene oxide nanocomposites. Sof Matter 7(13):6159–6166

    Article  ADS  Google Scholar 

  15. Buenviaje C, Ge S, Rafailovich M, Sokolov J, Drake JM, Overney RM (1999) Confined flow in polymer films at interfaces. Langmuir 15(19):6446–6450

    Article  Google Scholar 

  16. Lu B, Torquato S (1992) Nearest-surface distribution functions for polydispersed particle systems. Phys Rev A 45(8):5530

    Article  ADS  Google Scholar 

  17. Torquato S (2002) Random heterogeneous materials: microstructure and macroscopic properties. Springer, New York

    Book  Google Scholar 

  18. Mansoori G, Carnahan NF, Starling KE, Leland TW Jr (1971) Equilibrium thermodynamic properties of the mixture of hard spheres. J Chem Phys 54(4):1523–1525

    Article  ADS  Google Scholar 

  19. Underwood EE (1969) Stereology, or the quantitative evaluation of microstructures. J Microsc 89(2):161–180

    Article  Google Scholar 

  20. Xu WX, Chen HS (2013) Analytical and modeling investigations of volume fraction of interfacial layers around ellipsoidal aggregate particles in multiphase materials. Model Simul Mat Sci Eng 21(1):015005

    Article  ADS  Google Scholar 

  21. Xu W, Chen W, Chen H (2014) Modeling of soft interfacial volume fraction in composite materials with complex convex particles. J Chem Phys 140(3):034704

    Article  ADS  Google Scholar 

  22. Xu WX, Chen HS (2013) Numerical investigation of effect of particle shape and particle size distribution on fresh cement paste microstructure via random sequential packing of dodecahedral cement particles. Comput Struct 114–115:35–45

    Article  Google Scholar 

  23. Xu W, Duan Q, Ma H, Chen W, Chen H (2015) Interfacial effect on physical properties of composite media: Interfacial volume fraction with non-spherical hard-core-soft-shell-structured particles. Sci Rep 5:16003

    Article  ADS  Google Scholar 

  24. Gao Y, Schutter GD, Ye G (2013) Micro-and meso-scale pore structure in mortar in relation to aggregate content. Cement Concrete Res 52:149–160

    Article  Google Scholar 

  25. Mousa M, Dong Y (2017) Strong poly (vinyl alcohol)(PVA)/bamboo charcoal (BC) nanocomposite films with particle size effect. ACS Sustain Chem Eng 6(1):467–479

    Article  Google Scholar 

  26. Mousa M, Dong Y (2020) Towards sophisticated 3D interphase modelling of advanced bionanocomposites via atomic force microscopy. J Nanomater Article ID 4526108

    Google Scholar 

  27. Cheng HKF, Sahoo NG, Tan YP, Pan Y, Bao H, Li L, Chan SH, Zhao J (2012) Poly(vinyl alcohol) nanocomposites filled with poly(vinyl alcohol)-grafted graphene oxide. ACS Appl Mater Interfaces 4:2387–2394

    Article  Google Scholar 

  28. Fornes TD, Paul DR (2003) Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer 44(17):4993–5013

    Article  Google Scholar 

  29. Mousa M (2018) Experimental characterisation and modelling of sustainable multiscaled bionanocomposites. Ph.D. thesis, Curtin University, Perth, Australia

    Google Scholar 

  30. Lecouvet B, Horion J, D’haese C, Bailly C, Nysten B (2013) Elastic modulus of halloysite nanotubes. Nanotechnology 24(10):105704

    Google Scholar 

  31. Yuan P, Southon PD, Liu Z, Green ME, Hook JM, Antill SJ, Kepert CJ (2008) Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J Phys Chem C 112(40):15742–15751

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohanad Mousa .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mousa, M., Dong, Y. (2021). Micromechanical Models of PVA-Based Bionanocomposite Films. In: Multiscaled PVA Bionanocomposite Films. Springer, Singapore. https://doi.org/10.1007/978-981-15-8771-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8771-9_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8770-2

  • Online ISBN: 978-981-15-8771-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics