Skip to main content

3D Interphase of PVA Bionanocomposite Films

  • Chapter
  • First Online:
Multiscaled PVA Bionanocomposite Films
  • 159 Accesses

Abstract

In this chapter, nanomechanical properties and interphase dimensions of polyvinyl alcohol (PVA) bionanocomposite films were measured by a peak force quantitative nanomechanical tapping mode (PFQNM). Our results revealed that the interphase in case of PVA/nanodiameter bamboo charcoal (NBC) bionanocomposites has higher nanoelastic properties and reinforcement efficiency than those of PVA/halloysite nanotube (HNT) bionanocomposites and PVA/Cloisite 30B clay bionanocomposites. Such results are associated with higher interphase volume per unit particle volume in case of PVA/NBC bionanocomposites, as opposed to the other two bionanocomposites.

This chapter takes partial content materials from authors’ published research article ‘Mousa M, Dong Y (2020) Towards sophisticated 3D interphase modelling of advanced bionanocomposites via atomic force microscopy, J Nanomater, Article ID 4526108’ under Creative Commons Attribution Licence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu H, Brinson LC (2008) Reinforcing efficiency of nanoparticles: a simple comparison for polymer nanocomposites. Compos Sci Technol 68(6):1502–15012

    Article  Google Scholar 

  2. Mousa M, Dong Y (2017) Strong poly (vinyl alcohol)(PVA)/bamboo charcoal (BC) nanocomposite films with particle size effect. ACS Sustain Chem Eng 6(1):467–479

    Article  Google Scholar 

  3. Mousa M, Dong Y (2018) Novel three-dimensional interphase characterisation of polymer nanocomposites using nanoscaled topography. Nanotechnology 29(38):385701

    Article  Google Scholar 

  4. Behmer DJ, Hawkins CP (1986) Effects of overhead canopy on macroinvertebrate production in a Utah stream. Freshw Biol 16(3):287–300

    Article  Google Scholar 

  5. Mousa M, Dong Y (2020) Towards sophisticated 3D interphase modelling of advanced bionanocomposites via atomic force microscopy. J Nanomater Article ID 4526108

    Google Scholar 

  6. Kim J-K, Mai Y-W (1998) Engineered interfaces in fiber reinforced composites. Elsevier, Kidlington

    Google Scholar 

  7. Tashiro K, Tadokoro H (1981) Calculation of three-dimensional elastic constants of polymer crystals. 3. α and γ forms of nylon 6. Macromolecules 14(3):781–785

    Google Scholar 

  8. Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32(8):1516–1526

    Article  Google Scholar 

  9. Mishra SK, Kannan S (2014) Development, mechanical evaluation and surface characteristics of chitosan/polyvinyl alcohol based polymer composite coatings on titanium metal. J Mech Behav Biomed Mater 40:314–324

    Article  Google Scholar 

  10. Jafarzadeh S, Claesson PM, Sundell PE, Pan J, Thormann E (2014) Nanoscale electrical and mechanical characteristics of conductive polyaniline network in polymer composite films. ACS Appl Mater Interfaces 6(21):19168–19175

    Article  Google Scholar 

  11. Clifford CA, Seah MP (2005) Quantification issues in the identification of nanoscale regions of homopolymers using modulus measurement via AFM nanoindentation. Appl Surf Sci 252(5):1915–1933

    Article  ADS  Google Scholar 

  12. Syed Asif S, Wahl KJ, Colton RJ, Warren OL (2001) Quantitative imaging of nanoscale mechanical properties using hybrid nanoindentation and force modulation. J Appl Phys 90(3):1192–1200

    Article  ADS  Google Scholar 

  13. Liu Y, Hamon AL, Haghi-Ashtiani P, Reiss T, Fan B, He D, Bai J (2016) Quantitative study of interface/interphase in epoxy/graphene-based nanocomposites by combining STEM and EELS. ACS Appl Mater Interfaces 8(49):34151–34158

    Article  Google Scholar 

  14. Li Y, Huang Y, Krentz T, Natarajan B, Neely T, Schadler LS (2016) Polymer nanocomposite interfaces: the hidden lever for optimizing performance in spherical nanofilled polymers. In: Netravali NA, Mittal KL (eds) Interface/interphase in polymer nanocomposites. Scrivener Publishing LLC, Beverly, pp 1–69

    Google Scholar 

  15. Widjojo N, Chung TS, Weber M, Maletzko C, Warzelhan V (2011) The role of sulphonated polymer and macrovoid-free structure in the support layer for thin-film composite (TFC) forward osmosis (FO) membranes. J Membr Sci 383(1–2):214–223

    Article  Google Scholar 

  16. Mousa MH, Dong Y, Davies IJ (2016) Recent advances in bionanocomposites: preparation, properties, and applications. Int J Polym Mater Polym Biomater 65(5):225–254

    Article  Google Scholar 

  17. Fan H, Hartshorn C, Buchheit T, Tallant D, Assink R, Simpson R, Kissel DJ, Lacks DJ, Torquato S, Brinker CJ (2007) Modulus–density scaling behaviour and framework architecture of nanoporous self-assembled silicas. Nat Mater 6(6):418–423

    Article  ADS  Google Scholar 

  18. Alishahi E, Shadlou S, Doagou-R S, Ayatollahi MR (2013) Effects of carbon nanoreinforcements of different shapes on the mechanical properties of epoxy-based nanocomposites. Macromol Mater Eng 298(6):670–678

    Article  Google Scholar 

  19. Jesson DA, Watts JF (2012) The interface and interphase in polymer matrix composites: effect on mechanical properties and methods for identification. Polym Rev 52(3):321–354

    Article  Google Scholar 

  20. Blighe FM, Young K, Vilatela JJ, Windle AH, Kinloch IA, Deng L, Young RJ, Coleman JN (2011) The effect of nanotube content and orientation on the mechanical properties of polymer–nanotube composite fibers: separating intrinsic reinforcement from orientational effects. Adv Funct Mater 21(2):364–371

    Article  Google Scholar 

  21. Gu Y, Li M, Wang J, Zhang Z (2010) Characterization of the interphase in carbon fiber/polymer composites using a nanoscale dynamic mechanical imaging technique. Carbon 48(11):3229–3235

    Article  Google Scholar 

  22. Zhao X, Zhang Q, Chen D, Lu P (2010) Enhanced mechanical properties of graphene-based poly (vinyl alcohol) composites. Macromolecule 43(5):2357–2363

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohanad Mousa .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mousa, M., Dong, Y. (2021). 3D Interphase of PVA Bionanocomposite Films. In: Multiscaled PVA Bionanocomposite Films. Springer, Singapore. https://doi.org/10.1007/978-981-15-8771-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8771-9_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8770-2

  • Online ISBN: 978-981-15-8771-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics