Skip to main content

Production of Superposition of Coherent States Using Kerr Non Linearity

  • Conference paper
  • First Online:
Recent Trends in Materials and Devices

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 256))

Abstract

The coherent states are often called as Glauber coherent states and were named after the American Scientist Glauber who was first to realize the extraordinary usefulness of these coherent states for explanation and analysis of many optical phenomena. These states were first introduced by Sudarshan also and are now been extensively studied and applied to quantum-optical problems. The most explicit form of these states are expressed as, \( \left| {\,\alpha \,} \right\rangle = \,\sum\nolimits_{n = 0}^{\infty } {e^{{ - \frac{1}{2}\,\left| {\,\alpha \,} \right|^{2} }} \frac{{\alpha^{n} }}{\sqrt n !}\,\left| {\,n\,} \right\rangle } \) where, the Fock states \( \left| {\,n\,} \right\rangle \) is the eigen state of the number operator \( N = \,a^{{{\dag }}} a \), i.e., \( N\,\left| {\,n\,} \right\rangle = \,n\,\left| {\,n\,} \right\rangle \) and \( \alpha \, = \,\alpha_{r} + \,i\alpha_{i} \) is a complex number. These Glauber coherent states are the eigen states of annihilation operator and are well known. They play a very important role in many applications of quantum information processing including quantum teleportation. But it has been a long dream for physicists to generate these superposed coherent states in the most general desired form \( \left| {\,\psi \,} \right\rangle \, = \,N\,\left( {\cos \,\frac{\theta }{2}\,\left| {\,\alpha \,} \right\rangle \, \pm \sin \,\frac{\theta }{2}\,e^{i\,\varphi } \,\left| { - \alpha \,} \right\rangle \,} \right)\, \) where, N is the normalization factor. In this paper, we propose a scheme to generate any such general superposition of coherent states \( \left| {\,\alpha \,} \right\rangle \) and \( \left| { - \alpha \,} \right\rangle \) using Kerr effect, two beams in coherent states, a single photon beam and optical devices like polarization beam splitter and mirrors. In the output, if a single photon is detected in a polarization state defined by angle \( \theta \) and \( \varphi \), the desired superposition of coherent states \( \left| {\,\alpha \,} \right\rangle \) and \( \left| { - \alpha \,} \right\rangle \) results. If the photon is detected in an orthogonal polarization state (the state in which the electric field strength at a given point in space is normal to the direction of propagation), a superposition state different from the desired one results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.J. Glauber, Phys. Rev. 130, 2529 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  2. R.J. Glauber, Phys. Rev. 131, 2766 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  3. R.J. Glauber, In quantum optics and electronics. In: C. De Witt, A. Blandin, Cohen Tanaudiji C Gordon and Breach, New York (1965)

    Google Scholar 

  4. E.C.G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  5. V. Fock, Z. Phys. 49, 339 (1928)

    Article  ADS  Google Scholar 

  6. E. Schrodinger, Phys. Rev. 14, 644 (1927)

    Google Scholar 

  7. B. Yurke, D. Stoler, Phy. Rev. Lett. 57, 13 (1986)

    Article  ADS  Google Scholar 

  8. G.J. Milburn, C.A. Holmes, Phys. Rev. Lett. 56, 2237 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  9. E. Schrodinger, Die gegenwartige Situation in der Quantenmechanik. Naturewissenschaften 23:807, 823, 844. An English translation of this can be found in Quantum Theory of Measurement, edited by J. Wheeler and W. H. Zurek (Princeton: Princeton University Press, 1983) (1935)

    Google Scholar 

  10. M.S. Kim, Paternostro M arXiv quant-Ph/0510057 v1

    Google Scholar 

  11. C.C. Gerry, Phys. Rev. A 55, 2479 (1996)

    Google Scholar 

  12. C.M. Savage, W.A. Cheng, Opt. Comm. 70, 439 (1989); N. Qureshi, H. Schmidt, A.R. Hawkins, Appl. Phys. Lett. 85, 431 (2004); N. Qureshi, S.Q. Wang, M.A. Lowther, A.R. Hawkins, S. Kwon, A. Liddle, J. Bokor, Schmidt H. Nano Lett. 5, 1413

    Google Scholar 

  13. P. Tombesi, A. Mecozzi, J. Opt. Soc. Am. B 4, 1700 (1987); P.R. Cantwell, U.J. Gibson, D.A. Allwood, H.A.M. Macleod, J. Appl. Phys. 100, 093910 (2006)

    Google Scholar 

  14. T. Ogawa, M. Uede, N. Imoto, Phys. Rev. A 43, 6458 (1991)

    Article  ADS  Google Scholar 

  15. J.J. Slosser, P. Meystre, E.M. Wright, Opt. Lett. 15, 233 (1990)

    Article  ADS  Google Scholar 

  16. J. Banacloche, Phys. Rev. A 44, 5913 (1991)

    Article  ADS  Google Scholar 

  17. J.J. Slosser, P. Meystre, Phys. Rev. A 41, 3867 (1990)

    Google Scholar 

  18. P. Meystre, J.J. Slosser, M. Wilkens, Phys. Rev. A 43, 4959 (1991)

    Article  ADS  Google Scholar 

  19. M. Wilkens, P. Meystre, Phys. Rev. A 43, 3832 (1991)

    Article  ADS  Google Scholar 

  20. A. La Porta, R.E. Slusher, B. Yurke, Phys. Rev. Lett. 62, 28 (1989)

    Article  ADS  Google Scholar 

  21. S. Song, C.M. Caves, B. Yurke, Phys. Rev. A 41, 5261 (1990)

    Article  ADS  Google Scholar 

  22. B. Yurke, J. Opt. Soc. Am. B. 2, 732 (1986)

    Article  ADS  Google Scholar 

  23. E.T. Jaynes, E.W. Cummings, Proc. IEEE 51, 89 (1963)

    Article  Google Scholar 

  24. S.J.D. Phoenix, P.L. Knight, Ann. Phys. (New York) 186, 381 (1988)

    Article  ADS  Google Scholar 

  25. S.J.D. Phoenix, P.L. Knight, J. Opt. Soc. Am. B 7, 116 (1990)

    Article  ADS  Google Scholar 

  26. J. Gea-Banacloche, Phys. Rev. Lett. 65, 3385 (1990)

    Article  ADS  Google Scholar 

  27. S.J.D. Phoenix, P.L. Knight, Phys. Rev. Lett. 66, 2833 (1991)

    Article  ADS  Google Scholar 

  28. B. Yurke, W. Schleich, D.F. Walls, Phys. Rev. A 42, 1703 (1990)

    Article  ADS  Google Scholar 

  29. J. Eiselt, H. Risken, Opt. Comm. 72, 351 (1989)

    Article  ADS  Google Scholar 

  30. V. Buzek, H. Moya-Cessa, P.L. Knight, S.J.D. Phornix, Phys. Rev. A 45, 8190 (1992)

    Article  ADS  Google Scholar 

  31. A. Auffeves, Phys. Rev. Lett. 91, 230405 (2003)

    Article  ADS  Google Scholar 

  32. M.S. Kim, G.S. Agarwal, J. Mod. Opt. 46, 2111 (1999)

    Article  ADS  Google Scholar 

  33. P.K. Pathak, G.S. Agarwal, Phys. Rev. A 71, 043823 (2005)

    Article  ADS  Google Scholar 

  34. N. Chandra, H. Prakash, Ind. J. Pure Appl. Phys. 9, 688 (1971)

    Google Scholar 

  35. N. Chandra, H. Prakash, Indian J. Pure Appl. Phys. 2, 767 (1971)

    Google Scholar 

  36. N. Chandra, H. Prakash, Lett Nuovo Cim 4, 1196 (1970)

    Article  Google Scholar 

  37. N. Chandra, H. Prakash, Phys. Rev. Lett. 22, 1068 (1969)

    Google Scholar 

  38. D. Stoler, B.E.A. Saleh, M.C. Teich, Opt. Acta 32, 345 (1985)

    Article  ADS  Google Scholar 

  39. Y. Xia, G. Guo, Phys. Lett. A 136, 281 (1989)

    Article  ADS  Google Scholar 

  40. D.T. Pegg, S.M. Barnett, J. Mod. Opt. 46, 1657 (1999)

    Article  ADS  Google Scholar 

  41. B.C. Sanders, Phys. Rev. A 39, 4284 (1989)

    Article  ADS  Google Scholar 

  42. P.L. Knight, V. Buzek, Opt. Comm. 81, 331 (1991)

    Article  ADS  Google Scholar 

  43. C.L. Chai, Phys. Rev. A 46, 7187 (1992)

    Article  ADS  Google Scholar 

  44. B.C. Sanders, Phys. Rev. A 45, 6811 (1992)

    Article  ADS  Google Scholar 

  45. C.T. Lee, Phys. Rev. A 52, 3374 (1995)

    Article  ADS  Google Scholar 

  46. R. Ragi, B. Baseia, V.S. Bagnato, Int. J. Mod. Phys. B 12, 1495 (1998)

    Article  ADS  Google Scholar 

  47. K. Nemoto, B.C. Sanders, J. Phys. A 34, 2051 (2000)

    Article  ADS  Google Scholar 

  48. W. Schleich, M. Pernigo, F.L. Kein, Phys. Rev. A 44, 2172 (1991)

    Article  ADS  Google Scholar 

  49. V.V. Dodonov, S.Y. Kalmykov, V.I. Man’ko Phys. Lett. A 199, 123 (1995)

    Google Scholar 

  50. K. Tara, G.S. Agarwal, S. Chaturvedi, Phy. Rev. A 47, 5024 (1993)

    Article  ADS  Google Scholar 

  51. H. Jeong, M.S. Kim, J. Lee, Phys. Rev. A 64, 052308 (2001)

    Article  ADS  Google Scholar 

  52. Christopher C. Gerry, Phy. Rev. A 59, 4095 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  53. M. Hillery, Phys. Rev. A 36, 3796 (1987)

    Article  ADS  Google Scholar 

  54. A. Mecozzi, P. Tombesi, Phys. Rev. Lett. 58, 1055 (1987)

    Article  ADS  Google Scholar 

  55. H. Prakash, N. Chandra, Phys. Rev. A 9, 2167 (1974)

    Article  ADS  Google Scholar 

  56. D.F. Walls, Nature 306, 141 (1983)

    Article  ADS  Google Scholar 

  57. R. Loudon, P.L. Knight, J. Mod. Opt. 34, 709 (1987)

    Article  ADS  Google Scholar 

  58. V.V. Dodonov, J. Opt. B 4, R1 (2002)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

Shivani A. Kumar would like to thank Amity University, Noida, Uttar Pradesh for its support in every way wherever required.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivani A. Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, S.A., Prakash, H., Chandra, N., Prakash, R. (2020). Production of Superposition of Coherent States Using Kerr Non Linearity. In: Jain, V.K., Rattan, S., Verma, A. (eds) Recent Trends in Materials and Devices. Springer Proceedings in Physics, vol 256. Springer, Singapore. https://doi.org/10.1007/978-981-15-8625-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8625-5_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8624-8

  • Online ISBN: 978-981-15-8625-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics