Skip to main content

General Hyperbolic Operators with Memory

  • Chapter
  • First Online:
Tauberian Theory of Wave Fronts in Linear Hereditary Elasticity
  • 117 Accesses

Abstract

This chapter is devoted to the study of conditions of hyperbolicity for intergro-differential operators of (1.1.34) and (1.1.35) types, that is, conditions under which the operators in question describe finite speed wave propagation. In Sects. 2.1 and 2.2, we deal with the one-dimensional case; Sects. 2.3, 2.4, and 2.5 are devoted to the case of n spatial dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Moreover, σj(λ) prove to be holomorphic [2].

  2. 2.

    The expression

    $$ {\Delta}^{(1)}\left(f;{\sigma}_1,{\sigma}_2\right)=\frac{f\left({\sigma}_2\right)-f\left({\sigma}_1\right)}{\sigma_2-{\sigma}_1} $$

    is called the first-order divided difference for the function f(σ) with respect to points σ1 and σ2; the expression

    $$ {\varDelta}^{(2)}\;\left(f;{\sigma}_1,{\sigma}_2,{\sigma}_3\right)=\frac{\varDelta^{(1)}\left(f;{\sigma}_2,{\sigma}_3\right)-{\varDelta}^{(1)}\left(f;{\sigma}_1,{\sigma}_2\right)}{\sigma_3-{\sigma}_1} $$

    is called the second-order divided difference for the function f(σ)with respect to points σ1, σ2, σ3,etc.

References

  1. Vladimirov, V.S.: Distributions in Mathematical Physics, pp. 1–318. Nauka, Moscow (1979)

    Google Scholar 

  2. Marcushevitc, A.l.: Theory of Analytic Functions, vol. 1, pp. 1–486. Nauka, Moscow (1967)

    Google Scholar 

  3. Lions, J.-L. J. Anal. Math. 2, 369, 1952–1953.

    Google Scholar 

  4. Atiah, M.F., Bott, R., Garding, L.: Acta Math. 24, 109 (1970)

    Article  Google Scholar 

  5. Lax, A.: Comm. Pure Appl. Math. 9, 135 (1956)

    Article  MathSciNet  Google Scholar 

  6. Münster, M. Rocky Mountain J. of Math. 3, 443 (1978).

    Google Scholar 

  7. Courant, R., Lax, A.: Comm. Pure Appl. Math. 8, 497 (1955)

    Article  MathSciNet  Google Scholar 

  8. Lokshin, A.A., Suvorova, J.V.: Mathematical Theory of Wave Propagation in Media with Memory, pp. 1–151. Moscow University Press, Moscow (1982)

    MATH  Google Scholar 

  9. Lokshin, A.A.: Trudy Sem. Petrovskogo, vol. 7, p. 148 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lokshin, A.A. (2020). General Hyperbolic Operators with Memory. In: Tauberian Theory of Wave Fronts in Linear Hereditary Elasticity. Springer, Singapore. https://doi.org/10.1007/978-981-15-8578-4_2

Download citation

Publish with us

Policies and ethics