Skip to main content

Review of Low to High Strength Alkali-Activated and Geopolymer Concrete

  • Conference paper
  • First Online:
Recent Trends in Civil Engineering

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 105))

Abstract

Popular building material has always been improving in the lines of material science developments. In this paper, the no use of Ordinary Portland Cement concrete studied, viz., fly ash-, slag- and meta-kaolin-based concrete, etc., from low to high strengths has been presented. Presently, all researchers and construction industries are working on using waste and energy-efficient material to develop sustainable concrete. This article presents the effects of various variables on the slump properties and mechanical properties, specifically to compressive strength. Recent study results indicated the alkali-activated and geopolymer binders have strong potential to replace conventional binders to a greater extent. Application of this environmentally friendly concrete may be an appropriate alternative to traditional concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrew RM (2017) Global CO2 emissions from cement production, pp 1–52. https://doi.org/10.5194/essd-2017-77

  2. Askarian M, Tao Z, Adam G, Samali B (2018) Mechanical properties of ambient cured one-part hybrid OPC-geopolymer concrete. Constr Build Mater 186:330–337. https://doi.org/10.1016/j.conbuildmat.2018.07.160

    Article  Google Scholar 

  3. Assi LN, Eddie Deaver E, Ziehl P (2018) Effect of source and particle size distribution on the mechanical and microstructural properties of fly Ash-Based geopolymer concrete. Construct Build Mater 167:372–380. https://doi.org/10.1016/j.conbuildmat.2018.01.193

  4. Bagheri A, Nazari A, Sanjayan JG, Rajeev P (2017) Alkali activated materials vs geopolymers: Role of boron as an eco-friendly replacement. Constr Build Mater 146:297–302. https://doi.org/10.1016/j.conbuildmat.2017.04.137

    Article  Google Scholar 

  5. Cao YF, Tao Z, Pan Z, Wuhrer R (2018) Effect of calcium aluminate cement on geopolymer concrete cured at ambient temperature. Constr Build Mater 191:242–252. https://doi.org/10.1016/j.conbuildmat.2018.09.204

    Article  Google Scholar 

  6. Davidovits J (1982) Mineral polymers and methods of making them

    Google Scholar 

  7. Farhan NA, Sheikh MN, Hadi MNS (2019) Investigation of engineering properties of normal and high strength fly ash based geopolymer and alkali-activated slag concrete compared to ordinary Portland cement concrete. Constr Build Mater 196:26–42. https://doi.org/10.1016/j.conbuildmat.2018.11.083

    Article  Google Scholar 

  8. Ferdous W, Manalo A, Khennane A, Kayali O (2015) Geopolymer concrete-filled pultruded composite beams - Concrete mix design and application. Cement Concr Compos 58:1–13. https://doi.org/10.1016/j.cemconcomp.2014.12.012

    Article  Google Scholar 

  9. Flatt RJ, Roussel N, Cheeseman CR (2012) Concrete: An eco material that needs to be improved. J Eur Ceram Soc 32(11):2787–2798. https://doi.org/10.1016/j.jeurceramsoc.2011.11.012

    Article  Google Scholar 

  10. Glukhovsky V (n.d.) Soil Silicates. Kiev, 1959

    Google Scholar 

  11. Gunasekara C, Law DW, Setunge S (2016) Long term permeation properties of different fly ash geopolymer concretes. Constr Build Mater 124:352–362. https://doi.org/10.1016/j.conbuildmat.2016.07.121

    Article  Google Scholar 

  12. Hadi MNS, Farhan NA, Sheikh MN (2017) Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method. Constr Build Mater 140:424–431. https://doi.org/10.1016/j.conbuildmat.2017.02.131

    Article  Google Scholar 

  13. Kühl H (1908) Slag cement and process of making the same. U.S. Patent 900,939

    Google Scholar 

  14. Mehta A, Siddique R, Pratap B, Aggoun S, Łagód G, Barnat-hunek D (2017) Influence of various parameters on strength and absorption properties of fly ash based geopolymer concrete designed by Taguchi method. Constr Build Mater 150:817–824. https://doi.org/10.1016/j.conbuildmat.2017.06.066

    Article  Google Scholar 

  15. Nath P, Sarker PK (2014) Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr Build Mater 66:163–171. https://doi.org/10.1016/j.conbuildmat.2014.05.080

    Article  Google Scholar 

  16. Nematollahi B, Sanjayan J, Shaikh FUA (2015) Synthesis of heat and ambient cured one-part geopolymer mixes with different grades of sodium silicate. Ceram Int 41(4):5696–5704. https://doi.org/10.1016/j.ceramint.2014.12.154

    Article  Google Scholar 

  17. Nguyen KT, Le TA, Lee K (2018) Evaluation of the mechanical properties of sea sand-based geopolymer concrete and the corrosion of embedded steel bar. Constr Build Mater 169:462–472. https://doi.org/10.1016/j.conbuildmat.2018.02.169

    Article  Google Scholar 

  18. Nuaklong P, Sata V, Wongsa A, Srinavin K, Chindaprasirt P (2018) Recycled aggregate high calcium fly ash geopolymer concrete with inclusion of OPC and nano-SiO2. Constr Build Mater 174:244–252. https://doi.org/10.1016/j.conbuildmat.2018.04.123

    Article  Google Scholar 

  19. Pouhet R, Cyr M (2016) Formulation and performance of flash metakaolin geopolymer concretes. Constr Build Mater 120:150–160. https://doi.org/10.1016/j.conbuildmat.2016.05.061

    Article  Google Scholar 

  20. Provis JL (2018) Alkali-activated materials. Cem Concr Res 114:40–48. https://doi.org/10.1016/j.cemconres.2017.02.009

    Article  Google Scholar 

  21. Purdon A (1935) Improvements in processes of manufacturing cement, mortars and concretes

    Google Scholar 

  22. Purdon A (1940) The action of alkalis on blast-furnace slag. J Soc Chem Ind Trans Commun 59:191–202

    Article  Google Scholar 

  23. Rafeet A, Vinai R, Soutsos M, Sha W (2017) Guidelines for mix proportioning of fly ash/GGBS based alkali activated concretes. Constr Build Mater 147:130–142. https://doi.org/10.1016/j.conbuildmat.2017.04.036

    Article  Google Scholar 

  24. Reddy MS, Dinakar P, Rao BH (2018) Mix design development of fly ash and ground granulated blast furnace slag based geopolymer concrete. J Build Eng 20(August):712–722. https://doi.org/10.1016/j.jobe.2018.09.010

    Article  Google Scholar 

  25. Roy DM, Gouda GR (1975) Optimization of strength in cement pastes. Cem Concr Res 5(2):153–162. https://doi.org/10.1016/0008-8846(75)90073-3

    Article  Google Scholar 

  26. Sun Z, Lin X, Vollpracht A (2018) Pervious concrete made of alkali activated slag and geopolymers. Constr Build Mater 189:797–803. https://doi.org/10.1016/j.conbuildmat.2018.09.067

    Article  Google Scholar 

  27. Thomas RJ, Peethamparan S (2015) Alkali-activated concrete: engineering properties and stress-strain behavior. Constr Build Mater 93:49–56. https://doi.org/10.1016/j.conbuildmat.2015.04.039

    Article  Google Scholar 

  28. Vásquez A, Cárdenas V, Robayo RA, de Gutiérrez RM (2016) Geopolymer based on concrete demolition waste. Adv Powder Technol 27(4):1173–1179. https://doi.org/10.1016/j.apt.2016.03.029

    Article  Google Scholar 

  29. Wang KT, Du LQi, Lv XS, He Y, Cui XM (2017) Preparation of drying powder inorganic polymer cement based on alkali-activated slag technology. Powder Technol 312:204–209. https://doi.org/10.1016/j.powtec.2017.02.036

  30. Yang KH, Song JK, Ashour AF, Lee ET (2008) Properties of cementless mortars activated by sodium silicate. Constr Build Mater 22(9):1981–1989. https://doi.org/10.1016/j.conbuildmat.2007.07.003

    Article  Google Scholar 

  31. Yaseri S, Hajiaghaei G, Mohammadi F, Mahdikhani M, Farokhzad R (2017) The role of synthesis parameters on the workability, setting and strength properties of binary binder based geopolymer paste. Constr Build Mater 157:534–545. https://doi.org/10.1016/j.conbuildmat.2017.09.102

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muralidhar V. Kamath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kamath, M.V., Prashanth, S., Kumar, M. (2021). Review of Low to High Strength Alkali-Activated and Geopolymer Concrete. In: Das, B.B., Nanukuttan, S.V., Patnaik, A.K., Panandikar, N.S. (eds) Recent Trends in Civil Engineering. Lecture Notes in Civil Engineering, vol 105. Springer, Singapore. https://doi.org/10.1007/978-981-15-8293-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8293-6_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8292-9

  • Online ISBN: 978-981-15-8293-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics