Skip to main content

A Review on Actuator and Manipulator Techniques in Soft Robotics

  • Conference paper
  • First Online:
Advances in Automation, Signal Processing, Instrumentation, and Control (i-CASIC 2020)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 700))

Abstract

Conventional robots which are based on the rigid links, preprogrammed single task control, and limited adaptability has very less scope in future robotics. Soft robotics is a breakthrough from this continuum designs and able us to develop more dexterous, flexible, simple, and human compliant robots. Soft robotics has made significant progress in the last few years in terms of principles, techniques, and material. This review presents different key principles and technologies which are currently in use for developing soft robots regarding actuators, manipulators, and sensors. Along with this, it explains their features, limitations, and available scope in future for developing modern robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laschi C, Cianchetti M (2014) Soft robotics: new perspectives for robot bodyware and control. Frontiers Bioeng Biotechnol 2:3

    Article  Google Scholar 

  2. Laschi C, Mazzolai B, Cianchetti M (2016) Soft robotics: technologies and systems pushing the boundaries of robot abilities. Sci Robot 1(1): eaah3690

    Google Scholar 

  3. Rus DT, Tolley MT (2015) Design, fabrication and control of soft robots. Nature 521(7553):467

    Article  Google Scholar 

  4. Chakraborty B, Behringer B (2009) Jamming of granular matter. In: Encyclopedia of complexity and systems science. Springer, New York, pp 4997–5021

    Google Scholar 

  5. Amend JR, Brown E, Rodenberg N, Jaeger HM, Lipson H (2012) A positive pressure universal gripper based on the jamming of granular material. IEEE Trans Rob 28(2):341–350

    Article  Google Scholar 

  6. Brown E, Rodenberg N, Amend J, Mozeika A, Steltz E, Zakin MR, Lipson H, Jaeger HM (2010) Universal robotic gripper based on the jamming of granular material. Proc Natl Acad Sci 107(44):18809–18814

    Article  Google Scholar 

  7. Cheng NG, Lobovsky MB, Keating SJ, Setapen AM, Gero KI, Hosoi AE, Iagnemma KD (2012, May) Design and analysis of a robust, low-cost, highly articulated manipulator enabled by jamming of granular media. In: 2012 IEEE international conference on robotics and automation (ICRA). IEEE, pp 4328–4333

    Google Scholar 

  8. Andrikopoulos G, Nikolakopoulos G, Manesis S (2011, June) A survey on applications of pneumatic artificial muscles. In: 2011 19th mediterranean conference on control & automation (MED). IEEE, pp 1439–1446

    Google Scholar 

  9. Memarian, M., Gorbet, R. and Kulić, D (2015, September) Modelling and experimental analysis of a novel design for soft pneumatic artificial muscles. In: 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 1718–1724

    Google Scholar 

  10. Daerden F, Lefeber D (2002) Pneumatic artificial muscles: actuators for robotics and automation. Eur J Mech Environ Eng 47(1):1121

    Google Scholar 

  11. Verrelst B, Van Ham R, Vanderborght B, Daerden F, Lefeber D, Vermeulen J (2005) The pneumatic biped “Lucy” actuated with pleated pneumatic artificial muscles. Auton Robots 18(2):201213

    Article  Google Scholar 

  12. Daerden F, Lefeber D (2001) The concept and design of pleated pneumatic artificial muscles. Int J Fluid Power 2(3):41–50

    Article  Google Scholar 

  13. Tondu B, Ippolito S, Guiochet J, Daidie A (2005) A seven-degrees-of-freedom robotarm driven by pneumatic artificial muscles for humanoid robots. Int J Robot Res 24(4):257–274

    Article  Google Scholar 

  14. Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 19802015(56):1078–1113

    Article  Google Scholar 

  15. Derby S, Sreekumar M, Nagarajan T, Singaperumal M, Zoppi M, Molfino R (2007) Critical review of current trends in shape memory alloy actuators for intelligent robots. Ind Robot Int J 34(4):285–294

    Article  Google Scholar 

  16. Uchino K (2007) Piezoelectric actuators: expansion from IT/robotics to ecological/energy applications (特集 無鉛圧 電材料・素子). 日本 AEM 学会誌=. J Jpn Soc Appl Electromagnet 15(4):399–409

    Google Scholar 

  17. Price AD, Jnifene A, Naguib HE (2007) Design and control of a shape memory alloy based dexterous robot hand. Smart Mater Struct 16(4):1401

    Article  Google Scholar 

  18. Laurentis KJD, Mavroidis C (2002) Mechanical design of a shape memory alloy actuated prosthetic hand. Technol Health Care 10(2):91–106

    Article  Google Scholar 

  19. Le TS, Schlegel H, Drossel WG, Hirsch A (2016) Antagonistic shape memory alloy actuators in soft robotics. In: Solid state phenomena, vol 251. Trans Tech Publications, pp 126–132

    Google Scholar 

  20. Villanueva A, Smith C, Priya S (2011) A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators. Bioinspiration Biomimetics 6(3):036004

    Article  Google Scholar 

  21. Colorado J, Barrientos A, Rossi C, Breuer KS (2012) Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators. Bioinspiration Biomimetics 7(3):036006

    Article  Google Scholar 

  22. Punning A, Anton M, Kruusmaa M, Aabloo A (2004, September) A biologically inspired ray-like underwater robot with electroactive polymer pectoral fins. In: International IEEE conference on mechatronics and robotics, vol 2004, pp 241–245

    Google Scholar 

  23. Jung J, Kim B, Tak Y, Park JO (2003, October) Undulatory tadpole robot (TadRob) using ionic polymer metal composite (IPMC) actuator. In: Proceedings 2003 IEEE/RSJ international conference on intelligent robots and systems (IROS 2003) (Cat. No. 03CH37453), vol 3. IEEE, pp 2133–2138

    Google Scholar 

  24. Bar-Cohen Y, Bar-Cohen Y (2004) Electroactive polymer (EAP) actuators as artificial muscles: reality, potential, and challenges, vol 136. SPIE Press, Bellingham, pp 1–765

    Google Scholar 

  25. Bar-Cohen Y, Leary SP, Yavrouian A, Oguro K, Tadokoro S, Harrison JS, Smith JG, Su J (2000, June) Challenges to the application of IPMC as actuators of planetary mechanisms. In: Smart structures and materials 2000: electroactive polymer actuators and devices (EAPAD), vol 3987. International society for optics and photonics, pp 140–147

    Google Scholar 

  26. De Greef A, Lambert P, Delchambre A (2009) Towards flexible medical instruments: review of flexible fluidic actuators. Precis Eng 33(4):311–321

    Article  Google Scholar 

  27. Gaiser I, Wiegand R, Ivlev O, Andres A, Breitwieser H, Schulz S, Bretthauer G (2012) Compliant robotics and automation with flexible fluidic actuators and inflatable structures. In: Smart actuation and sensing systems-recent advances and future challenges. IntechOpen

    Google Scholar 

  28. Marchese AD, Onal CD, Rus D (2014) Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robot 1(1):75–87

    Google Scholar 

  29. Kargov A, Asfour T, Pylatiuk C, Oberle R, Klosek H, Schulz S, Regenstein K, Bretthauer G, Dillmann R (2005, June) Development of an anthropomorphic hand for a mobile assistive robot. In: 9th international conference on rehabilitation robotics. ICORR 2005. IEEE, pp 182–186

    Google Scholar 

  30. Gaiser IN, Pylatiuk C, Schulz S, Kargov A, Oberle R, Werner T (2009) The FLUIDHAND III: a multifunctional prosthetic hand. JPO J Prosthet Orthot 21(2):91–96

    Google Scholar 

  31. Behringer RP (2015) Jamming in granular materials. C R Phys 16(1):10–25

    Article  MathSciNet  Google Scholar 

  32. Chou CP, Hannaford B (1996) Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Trans Robot Autom 12(1):90–102

    Article  Google Scholar 

  33. Shinjo N, Swain GW (2004) Use of a shape memory alloy for the design of an oscillatory propulsion system. IEEE J Oceanic Eng 29(3):750–755

    Article  Google Scholar 

  34. Tao T, Liang YC, Taya M (2006) Bioinspired  actuating system for swimming using shape memory alloy composites. Int J Autom Comput 3(4):366–373

    Google Scholar 

  35. Lu N, Kim DH (2014) Flexible and stretchable electronics paving the way for soft robotics. Soft Robot 1(1):53–62

    Article  Google Scholar 

  36. Ming A, Hashimoto K, Zhao W, Shimojo M (2013, August) Fundamental analysis for design and control of soft fish robots using piezoelectric fiber composite. In: 2013 IEEE international conference on mechatronics and automation. IEEE, pp 219–224

    Google Scholar 

  37. Tadesse Y, Priya S, Stephanou H, Popa D, Hanson D (2006) Piezoelectric actuation and sensing for facial robotics. Ferroelectrics 345(1):13–25

    Article  Google Scholar 

  38. Seminara L, Capurro M, Cirillo P, Cannata G, Valle M (2011) Electromechanical characterization of piezoelectric PVDF polymer films for tactile sensors in robotics applications. Sens Actuators A 169(1):49–58

    Article  Google Scholar 

  39. Peng Y, Peng Y, Gu X, Wang J, Yu H (2015) A review of long range piezoelectric motors using frequency leveraged method. Sens Actuators A 235:240–255

    Article  Google Scholar 

  40. Zhang ZM, An Q, Li JW, Zhang WJ (2012) Piezoelectric friction–inertia actuator—a critical review and future perspective. Int J Adv Manuf Technol 62(5–8):669–685

    Article  Google Scholar 

  41. Pulskamp JS, Polcawich RG, Rudy RQ, Bedair SS, Proie RM, Ivanov T, Smith GL (2012) Piezoelectric PZT MEMS technologies for small-scale robotics and RF applications. MRS Bull 37(11):1062–1070

    Article  Google Scholar 

  42. Hunter IW, Hollerbach JM, Ballantyne J (1991) A comparative analysis of actuator technologies for robotics. Robot Rev 2:299–342

    Google Scholar 

  43. Eckerle J, Stanford S, Marlow J, Schmidt R, Oh S, Low T, Shastri SV (2001, June) Biologically inspired hexapedal robot using field-effect electroactive elastomer artificial muscles. In: Smart structures and materials 2001: industrial and commercial applications of smart structures technologies, vol 4332. International Society for Optics and Photonics, pp 269–281

    Google Scholar 

  44. Jung J, Tak Y, Kim B, Park JO, Lee SK, Pak J (2003, July) Tadpole robot (TadRob) using ionic polymer metal composite (IPMC) actuator. In: Smart structures and materials 2003: electroactive polymer actuators and devices (EAPAD), vol 5051. International Society for Optics and Photonics, pp 272–281

    Google Scholar 

  45. Kim KJ, Tadokoro S (2007) Electroactive polymers for robotic applications. Artif Muscles Sens 23:291

    Google Scholar 

  46. Ilievski F, Mazzeo AD, Shepherd RF, Chen X, Whitesides GM (2011) Soft robotics for chemists. Angew Chem Int Ed 50(8):1890–1895

    Article  Google Scholar 

  47. Hanson DF, Pioggia G, Bar-Cohen Y, De Rossi D (2001, July) Androids: application of EAP as artificial muscles to entertainment industry. In: Smart structures and materials 2001: electroactive polymer actuators and devices, vol 4329. International society for optics and photonics, pp 375–380

    Google Scholar 

  48. Gaiser I, Schulz S, Breitwieser H, Bretthauer G (2010, December) Enhanced flexible fluidic actuators for biologically inspired lightweight robots with inherent compliance. In: 2010 IEEE international conference on robotics and biomimetics. IEEE, pp 1423–1428

    Google Scholar 

  49. Cianchetti M, Ranzani T, Gerboni G, Nanayakkara T, Althoefer K, Dasgupta P, Menciassi A (2014) Soft robotics technologies to address shortcomings in today’s minimally invasive surgery: the STIFF-FLOP approach. Soft Robot 1(2):122–131

    Article  Google Scholar 

  50. Landkammer S, Winter F, Schneider D, Hornfeck R (2016) Biomimetic spider leg joints: a review from biomechanical research to compliant robotic actuators. Robotics 5(3):15

    Article  Google Scholar 

  51. Nemiroski A, Shevchenko YY, Stokes AA, Unal B, Ainla A, Albert S, Compton G, MacDonald E, Schwab Y, Zellhofer C, Whitesides GM (2017) Arthrobots. Soft Robot 4(3):183–190

    Article  Google Scholar 

  52. Schulz S, Pylatiuk C, Bretthauer G (1999) A new class of flexible fluidic actuators and their applications in medical engineering. atAutomatisierungstechnik 47(8): 390–395

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanket A. Salunkhe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salunkhe, S., Patil, S. (2021). A Review on Actuator and Manipulator Techniques in Soft Robotics. In: Komanapalli, V.L.N., Sivakumaran, N., Hampannavar, S. (eds) Advances in Automation, Signal Processing, Instrumentation, and Control. i-CASIC 2020. Lecture Notes in Electrical Engineering, vol 700. Springer, Singapore. https://doi.org/10.1007/978-981-15-8221-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8221-9_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8220-2

  • Online ISBN: 978-981-15-8221-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics