Skip to main content

Positive Level, Negative Level and Level Zero

  • Conference paper
  • First Online:
Schubert Calculus and Its Applications in Combinatorics and Representation Theory (ICTSC 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 332))

Included in the following conference series:

Abstract

This is a survey on the combinatorics and geometry of integrable representations of quantum affine algebras with a particular focus on level 0. Pictures and examples are included to illustrate the affine Weyl group orbits, crystal graphs and Macdonald polynomials that provide detailed understanding of the structure of the extremal weight modules and their characters. The final section surveys the alcove walk method of working with the positive level, negative level and level zero affine flag varieties and describes the corresponding actions of the affine Hecke algebra.

Dedicated to I. G. Macdonald and A. O. Morris.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beck, J.: Braid group action and quantum affine algebras. Commun. Math. Phys. 165, 555–568 (1994). arXiv:hep-th/9404165, MR1301623

  2. Beck, J.: Crystal structure of level zero extremal weight modules. Lett. Math. Phys. 61, 221–229 (2002). arXiv:math/0205095, MR1942360

  3. Beck, J., Chari, V., Pressley, A.: An algebraic characterization of the affine canonical basis. Duke Math. J. 99(3), 455–487 (1999). arXiv: math/9808060, MR1712630

  4. Beck, J., Nakajima, H.: Crystal bases and two sided cells of quantum affine algebras. Duke Math. J. 123(2), 335–402 (2004). arXiv:math/02122253, MR2066942

  5. Braverman, A., Finkelberg, M.: Weyl modules and \(q\)-Whittaker functions. Math. Ann. 359, 45–59 (2014). arXiv:1203.1583, MR3201893

  6. Chari, V., Ion, B.: BGG reciprocity for current algebras. Compos. Math. 151, 1265–1287 (2015). arXiv:1307.1440, MR3371494

  7. Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994). MR1358358

    Google Scholar 

  8. Chari, V., Pressley, A.: Quantum affine algebras and their representations. Represent. Groups (Banff 1994) CMS Conf. Proc. 16, 59–78 (1995). arXiv:hep-th/9411145, MR1357195

  9. Chari, V., Pressley, A.: Weyl modules for classical and quantum affine algebras. Represent. Theory 5, 191–223 (2001). arXiv:math/0004174, MR1850556

  10. Cherednik, I.: Intertwining operators of double affine Hecke algebras. Select. Math. (N.S.) 3, 459–495 (1997). arXiv:9605014, MR1613515

  11. Cherednik, I., Orr, D.Nonsymmetric difference Whittaker functions. Math. Zeit. 279, 879–938 (2015). arXiv:1302.4094v3, MR3318254

  12. Drinfeld, V.G.: A new realization of Yangians and quantized affine algebras. Soviet Math. Dokl. 32, 212–216 (1988). MR0914215

    Google Scholar 

  13. Feigin, E., Makedonskyi, I.: Generalized Weyl modules, alcove paths and Macdonald polynomials. Select. Math. (N.S.) 23, 2863–2897 (2017). arXiv:1512.03254, MR3703467

  14. Fourier, G., Littelmann, P.: Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions. Adv. Math. 211, 566–593 (2007). arXiv:math/0509276, MR2323538

  15. Ion, B.: Nonsymmetric Macdonald polynomials and Demazure characters. Duke Math. J. 116, 299–318 (2003). arXiv:0105061, MR1953294

  16. Ishii, M., Naito, S., Sagaki, D.: Semi-infinite Lakshmibai-Seshadri path model for level zero exremal weight modules over quantum affine algebras. Adv. Math. 290, 967–1009 (2016). arXiv:1402.3884, MR3451944

  17. Kac, V.: Infinite dimensional Lie algebras, Third edition, xxii+400 pp. Cambridge University Press, Cambridge (1990). ISBN 0-521-37215-1; 0-521-46693-8, MR1104219

    Google Scholar 

  18. Kashiwara, M.: The crystal base and Littelmann’s refined Demazure character formula. Duke Math. J. 71, 839–858 (1993). MR1240605

    Google Scholar 

  19. Kashiwara, M.: Crystal bases of modified quantized enveloping algebra. Duke Math. J. 73, 383–413 (1994). not on arXiv, MR1262212

    Google Scholar 

  20. Kashiwara, M.: On level-zero representations of quantized affine algebras. Duke Math. J. 112, 117–175 (2002). arXiv:math/0010293, MR1890649

  21. Kashiwara, M.: Level zero fundamental representations over quantized affine algebras and Demazure modules. Publ. Res. Inst. Math. Sci. 41, 223–250 (2005). arXiv:math/0309142, MR2115972

  22. Kato, S.: Demazure character formula for semi-infinite flag varieties. Math. Ann. 371, 1769–1801 (2018). arXiv:1605.049532, MR3831285

  23. Kato, S., Naito, S., Sagaki, D.: Equivariant K-theory of semi-infinite flag manifolds and Pieri-Chevalley formula. arXiv: 1702.02408

  24. Kumar, S.: Kac-Moody Groups, Their Flag Varieties and Representation Theory. Progress in Mathematics, vol. 204. Birkhäuser, Boston (2002). ISBN: 0-8176-4227-7, MR1923198

    Google Scholar 

  25. Littelmann, P.: A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras. Invent. Math. 116, 329–346 (1994)

    Article  MathSciNet  Google Scholar 

  26. Littelmann, P.: Paths and root operators in representation theory. Ann. Math. 142,499–525 (1995). MR1356780

    Google Scholar 

  27. Lusztig, G.: Intersection cohomology methods in representation theory. Proc. Int. Congress Math. 155–174 (1990)

    Google Scholar 

  28. Lusztig, G.: Introduction to Quantum Groups. Progress in Mathematics, vol. 110. Birkhäuser (1993)

    Google Scholar 

  29. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs, 2nd edn. Oxford University Press, New York (1995). ISBN 0-19-853489-2, MR1354144

    Google Scholar 

  30. Macdonald, I.G.: Affine Hecke algebras and orthogonal polynomials, Séminaire Bourbaki 1994/95, exposés 790–804. Astérisque 237, 189–207 (1996)

    Google Scholar 

  31. Naito, S., Sagaki, D.: Demazure submodules of level-zero extremal weight modules and specializations of nonsymmetric Macdonald polynomials. Math. Zeit. 283, 937–978 (2016). arXiv:1404.2436, MR3519989

  32. Naito, S., Nomoto, F., Sagaki, D.: Specialization of nonsymmetric Macdonald polynomials at \(t=\infty \) and Demazure submodules of level zero extremal weight modules. Trans. Am. Math. Soc. 370, 2739–2783 (2018). arXiv:1511.07005, MR3748584

  33. Naito, S., Nomoto, F., Sagaki, D.: Representation-theoretic interpretation of Cherednik-Orr’s recursion formula for the specialization of nonsymmetric Macdonald polynomials at \(t=\infty \), Transform. Groups 24, 155–191 (2019). MR3916094

    Google Scholar 

  34. Nakajima, H.: Quiver varieties and finite dimensional representations of quantum affine algebras. J. Am. Math. Soc. 14(1), 145–238 (2001). arXiv: math/9912158, MR1808477

  35. Nakajima, H.: Quiver varieties and \(t\)-analogs of \(q\)-characters of quantum affine algebras. Ann. Math. 160(2), 1057–1097 (2004). arXiv:math/0105173, MR2144973

  36. Nakajima, H.: Extremal weight modules of quantum affine algebras. Representation theory of algebraic groups and quantum groups. Adv. Stud. Pure Math. 40, 343–369 Math. Soc. Japan, Tokyo 2004. arXiv:math/0204183, MR2074599

  37. Peterson, D.: Quantum Cohomology of \(G/P\). Lecture Notes. Massachusetts Institute of Technology, Cambridge (1997)

    Google Scholar 

  38. Parkinson, J., Ram, A., Schwer, C.: Combinatorics in affine flag varieties. J. Algebra 321, 3469–3493 (2009). arXiv:0801.0709, MR2510057

  39. Ram, A.: Alcove walks, Hecke algebras, Spherical functions, crystals and column strict tableaux. Pure Appl. Math. Quart. (Special Issue: In honor of Robert MacPherson, Part 2 of 3) 2(4), 963–1013 (2006). arXiv:0601.343, MR2282411

  40. Ram, A., Yip, M.: A combinatorial formula for Macdonald polynomials. Adv. Math. 226, 309–331 (2011). arXiv:0803.1146, MR2735761

  41. Steinberg, R.: Lectures on Chevalley Groups. Notes prepared by John Faulkner and Robert Wilson. Revised and corrected edition of the 1968 original [MR0466335]. University Lecture Series, vol. 66. American Mathematical Society, Providence (2016). ISBN: 978-1-4704-3105-1

    Google Scholar 

  42. Tits, J.: Uniqueness and presentation of Kac-Moody groups over fields. J. Algebra 105, 542–573 (1987). MR0873684

    Google Scholar 

  43. Varagnolo, M., Vasserot, E.: Standard modules of quantum affine algebras. Duke Math. J. 111(3), 509–533 (2002). arXiv:math/0006084, MR1885830

Download references

Acknowledgements

We thank Martha Yip for conversations, calculations and teaching us so much about Macdonald polynomials over the years. We thank all the institutions which have supported our work on this paper, particularly the University of Melbourne and the Australian Research Council (grants DP1201001942, DP130100674 and DE190101231). Arun Ram thanks IHP (Institute Henri Poincaré) and ICERM (Institute for Computational and Experimental Research in Mathematics) for support, hospitality and a stimulating working environments at the thematic programs “Automorphic Forms, Combinatorial Representation Theory and Multiple Dirichlet Series” and “Combinatorics and Interactions”.

Finally, it is a pleasure to dedicate this paper to Ian Macdonald and Alun Morris who forcefully led the way to the kinds explorations of affine combinatorial representation theory that are happening these days.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Ram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

McGlade, F., Ram, A., Yang, Y. (2020). Positive Level, Negative Level and Level Zero. In: Hu, J., Li, C., Mihalcea, L.C. (eds) Schubert Calculus and Its Applications in Combinatorics and Representation Theory. ICTSC 2017. Springer Proceedings in Mathematics & Statistics, vol 332. Springer, Singapore. https://doi.org/10.1007/978-981-15-7451-1_7

Download citation

Publish with us

Policies and ethics