Skip to main content

Minuscule Schubert Calculus and the Geometric Satake Correspondence

  • Conference paper
  • First Online:
Schubert Calculus and Its Applications in Combinatorics and Representation Theory (ICTSC 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 332))

Included in the following conference series:

Abstract

We describe a relationship between work of Gatto, Laksov, and their collaborators on realizations of (generalized) Schubert calculus of Grassmannians, and the geometric Satake correspondence of Lusztig, Ginzburg, and Mirković and Vilonen. Along the way we obtain new proofs of equivariant Giambelli formulas for the ordinary and orthogonal Grassmannians, as well as a simple derivation of the “rim-hook” rule for computing in the equivariant quantum cohomology of the Grassmannian.

DA was partially supported by a postdoctoral fellowship from the Instituto Nacional de Matemática Pura e Aplicada (IMPA) and by NSF Grant DMS-1502201.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In general, a cocharacter \(\varpi :\mathbb {C}^* \rightarrow T \subseteq G\) determines a reductive subgroup \(G_\varpi \subseteq G\), the centralizer of its image; the corresponding parabolic \(P_\varpi \) is generated by \(G_\varpi \) together with the Borel.

  2. 2.

    When \(n=1\), the spaces are 0-dimensional; when \(n=2\), they coincide with type A spaces. For \(n=3\), there are coincidences \(\mathcal {Q}^4 = {Gr}(2,4)\) and \(OG^+(3,6)=OG^-(3,6)=\mathbb {P}^3\). For \(n=4\), there are also coincidences \(\mathcal {Q}^6 = OG^+(4,8) = OG^-(4,8)\). The reader may use these to verify our claims, but beware that the torus actions are usually written differently.

  3. 3.

    The indexing most natural to our setup is slightly nonstandard. The rows and columns of A(x) are labelled \(n-1,\ldots ,0\) (left to right, top to bottom); similarly, the rows of \(B_I(x|t)\) are labelled \(n-1,\ldots ,0\) (top to bottom) and its columns are labelled \(i_1,\ldots ,i_k\) (left to right).

  4. 4.

    The non-equivariant rim hook rule was discovered by Bertram, Ciocan-Fontanine, and Fulton during the 1996–7 program on quantum cohomology at Institut Mittag-Leffler [3]. Bertiger, Milićević, and Taipale gave an equivariant generalization [2].

  5. 5.

    Our indexing of t variables is reversed when compared with that of [39], since we use opposite Schubert classes.

  6. 6.

    This “spin basis” is not directly connected to spin representations and the orthogonal Grassmannian, as far as we are aware.

References

  1. Anderson, D.: Introduction to equivariant cohomology in algebraic geometry,” lectures from a mini-course given at the IMPANGA Summer School on Algebraic Geometry, July 2010. In: Pragacz, P. (ed.) Contributions to Algebraic Geometry (2012)

    Google Scholar 

  2. Bertiger, A., Milićević, E., Taipale, K.: Algebr. Comb. 1(3), 327–352 (2018)

    MathSciNet  Google Scholar 

  3. Bertram, A., Ciocan-Fontanine, I., Fulton, W.: Quantum multiplication of Schur polynomials. J. Algebr. 219(2), 728–746 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Billey, S.: Kostant polynomials and the cohomology ring for \(G/B\). Duke Math. J. 96(1), 205–224 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bott, R.: The space of loops on a Lie group. Michigan Math. J. 5, 35–61 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brion, M., Carrell, J.B.: The equivariant cohomology ring of regular varieties. Michigan Math. J. 52(1), 189–203 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buch, A.: Quantum cohomology of Grassmannians. Compositio Math. 137(2), 227–235 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buch, A., Kresch, A., Tamvakis, H.: Quantum Pieri rules for isotropic Grassmannians. Invent. Math. 178(2), 345–405 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cotti, G., Dubrovin, B., Guzzetti, D.: Helix structures in quantum cohomology of fano varieties (2018).arXiv: 1811.09235

  10. Chevalley, C.: In: Cartier, P., Chevalley, C (eds.) The Algebraic Theory of Spinors and Clifford Algebras, Collected Works Vol. 2. Springer, Berlin (1997)

    Google Scholar 

  11. Dubrovin, B.: Geometry and analytic theory of Frobenius manifolds. In: Proceedings of the ICM, Vol. II (Berlin), pp. 315–326 (1998)

    Google Scholar 

  12. Fulton, W., Harris, J.: Representation Theory: A First Course. Springer, Berlin (1991)

    Google Scholar 

  13. Galkin, S., Golyshev, V., Iritani, H.: Gamma classes and quantum cohomology of Fano manifolds: Gamma conjectures. Duke Math. J. 165, 2005–2077 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gatto, L.: Schubert calculus via Hasse-Schmidt derivations. Asian J. Math. 9(3), 315–321 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gatto, L., Salehyan, P.: Schubert derivations on the infinite wedge power (2019). arXiv:1901.06853

  16. Gatto, L., Salehyan, P.: The Cohomology of the Grassmannian is a \(gl_n\)-module. Comm. Alg. (2019). arXiv:1902.03824

  17. Gatto, L., Santiago, T.: Schubert calculus on a Grassmann algebra. Canad. Math. Bull. 52(2), 200–212 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ginzburg, V.: Perverse sheaves on a loop group and Langlands duality (2000). arXiv:alg-geom/9511007v4

  19. Golyshev, V., Manivel, L.: Quantum cohomology and the Satake isomorphism (2011). arXiv:1106.3120v1

  20. Gorbounov, V., Korff, C.: Quantum integrability and generalised quantum Schubert calculus. Adv. Math. 313, 282–356 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gorbounov, V., Korff, C., Stroppel, C.: Yang-Baxter algebras as convolution algebras: the Grassmannian case (2018). arXiv:1802.09497

  22. Goresky, M., Kottwitz, R., MacPherson, R.: Equivariant cohomology, Koszul duality, and the localization theorem. Invent. Math. 131(1), 25–83 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ikeda, T.: Schubert classes in the equivariant cohomology of the Lagrangian Grassmannian. Adv. Math. 215(1), 1–23 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ikeda, T., Naruse, H.: Excited Young diagrams and equivariant Schubert calculus. Trans. Amer. Math. Soc. 361, 5193–5221 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ivanov, V.N.: Interpolation analogues of Schur \(Q\)-functions. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov 307, 99–119, 281–282 (2004); translation in J. Math. Sci. (N. Y.) 131, 5495–5507 (2005)

    Google Scholar 

  26. Kamnitzer, J.: Mirković-Vilonen cycles and polytopes. Ann. of Math. 171(1), 245–294 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kempf, G., Laksov, D.: The determinantal formula of Schubert calculus. Acta Math. 132, 153–162 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  28. Knutson, A., Tao, T.: Puzzles and (equivariant) cohomology of Grassmannians. Duke Math. J. 119(2), 221–260 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Laksov, D.: Schubert calculus and equivariant cohomology of Grassmannians. Adv. Math. 217(4), 1869–1888 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Laksov, D.: A formalism for equivariant Schubert calculus. Algebr. Number Theory 3(6), 711–727 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Laksov, D., Thorup, A.: A determinantal formula for the exterior powers of the polynomial ring. Indiana Univ. Math. J. 56(2), 825–845 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Laksov, D., Thorup, A.: Schubert calculus on Grassmannians and exterior powers. Indiana Univ. Math. J. 58(1), 283–300 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Laksov, D., Thorup, A.: Splitting algebras and Schubert calculus. Indiana Univ. Math. J. 61(3), 1253–1312 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lam, T., Templier, N.: The mirror conjecture for minuscule flag varieties (2017). arXiv:1705.00758

  35. Lusztig, G.: Singularities, character formulas, and a \(q\)-analog of weight multiplicities, Analysis and topology on singular spaces, II, III (Luminy, 1981), 208–229, Astérisque, 101–102. Soc. Math. France, Paris (1983)

    Google Scholar 

  36. Macdonald, I.G.: Symmetric Functions and Hall polynomials, 2nd edn. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  37. Manivel, L.: On spinor varieties and their secants. SIGMA Symmetry Integr. Geom. Methods Appl. 5, Paper 078, 22 pp. (2009)

    Google Scholar 

  38. Maulik, D., Okounkov, A.: Quantum groups and quantum cohomology (2012). arXiv:1211.1287

  39. Mihalcea, L.: Equivariant quantum Schubert calculus. Adv. Math. 203(1), 1–33 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mihalcea, L.: Giambelli formulae for the equivariant quantum cohomology of the Grassmannian. Trans. Amer. Math. Soc. 360(5), 2285–2301 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mirković, I., Vilonen, K.: Geometric Langlands duality and representations of algebraic groups over commutative rings. Ann. Math. 166(1), 95–143 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Nimmo, J.J.C.: Hall-Littlewood symmetric functions and the BKP equation. J. Phys. A 23(5), 751–760 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  43. Okada, S.: Pfaffian formulas and Schur Q-Function identities (2017). arXiv:1706.01029

  44. Okounkov, A.: Enumerative geometry and geometric representation theory. Proc. Symp. Pure Math. 97(1), 419–457 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. Pragacz, P.: Algebro-geometric applications of Schur \(S\)- and \(Q\)-polynomials. Topics in Invariant Theory, Paris, 1989/1990. Lecture Notes in Mathematics, vol. 1478, pp. 130–191 (1991)

    Google Scholar 

  46. Rimányi, R., Smirnov, A., Varchenko, A., Zhou, Z.: 3d mirror symmetry and elliptic stable envelopes (2019). arXiv:1902.03677

  47. Sottile, F.: Rational curves on Grassmannians: systems theory, reality, and transversality. Advances in Algebraic Geometry Motivated by Physics, pp. 9–42. Lowell, MA (2000); Contemp. Math. 276, Amer. Math. Soc., Providence, RI (2001)

    Google Scholar 

  48. Varagnolo, M.: Quiver varieties and Yangians. Lett. Math. Phys. 53(4), 273–283 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This note is partly based on a talk given by the first author at a conference dedicated to the memory of Dan Laksov (Mittag-Leffler, June 2014). The ideas grew out of conversations we had with Roi Docampo at IMPA. We learned about the connection between quantum Schubert calculus and the Satake correspondence from a remarkable preprint of Golyshev and Manivel [19], and the debt we owe to their work should be evident. We also thank Reimundo Heluani and Joel Kamnitzer for helping us understand the geometric Satake correspondence. Finally, we thank the referee for a very careful reading and thoughtful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dave Anderson .

Editor information

Editors and Affiliations

Appendix: Pfaffians and Spinors

Appendix: Pfaffians and Spinors

In this appendix, we prove a change-of-basis formula in the spin representation, where Pfaffians play the role analogous to determinants in the exterior algebra. This refines similar formulas of Chevalley and Manivel [10, 37].

First, for any complex vector space V with symmetric bilinear form \(\langle \;,\;\rangle \), the associated Clifford algebra is the quotient of the tensor algebra by two-sided ideal forcing the relation \(v\cdot w + v\cdot w = \langle v,w\rangle 1\) for all vectors \(v,w\in V\):

$$ Cl(V) := T^\bullet (V) / ( v\otimes w + w\otimes v - \langle v,w\rangle 1). $$

(Note that this definition differs slightly from the standard one, where \(\langle v,w \rangle 1\) would be replaced by \(2\langle v,w \rangle 1\)—but it is equivalent, up to rescaling the form \(\langle \;,\; \rangle \), since we are not in characteristic 2.) If the bilinear form is zero, this is just the exterior algebra: \(Cl(V) \cong \textstyle \bigwedge ^\bullet V\). In general, \(\dim Cl(V) = 2^{\dim V}\), with a basis consisting of products \(v_I=v_{i_1}\cdots v_{i_k}\) of distinct basis elements of V. (One can prove this by degenerating to the exterior algebra.)

We note the following general formulas in Cl(V), which are immediate from the defining relations. First, if x and y are orthogonal vectors in V (i.e., \(\langle x,y \rangle = 0\)), then

$$\begin{aligned} x\cdot y&= -y\cdot x \end{aligned}$$
(A.1)

in Cl(V). Next, suppose \(x = x_1\cdots x_r \in Cl(V)\) is a product of vectors in V such that \(X={{\,\mathrm{span}\,}}\{x_1,\ldots ,x_r\} \subseteq V\) is isotropic. Then for any vector \(y\in X\),

$$\begin{aligned} y\cdot x = 0 \end{aligned}$$
(A.2)

in Cl(V).

From now on, we assume \(\dim V=2n\) and its bilinear form is nondegenerate. Let \(y_{\overline{n-1}},\ldots ,y_{\overline{0}},y_0,\ldots ,y_{{n-1}}\) be an “orthogonal basis”, meaning \(\langle y_{\overline{\imath }}, y_j \rangle = \delta _{ij}\). (We interpret the bar as a negative sign, so \(\overline{\overline{\imath }}=i\).) Let \(y=y_0\cdots y_{n-1}\). The spin representation is the left ideal

$$ \mathbb {S}= Cl(V)\cdot y. $$

A (pure) spinor is an element of the form \(z\cdot y \in \mathbb {S}\), where \(z = z_1\cdots z_n\) is a product of vectors \(z_1,\ldots ,z_n \in V\) which span a maximal isotropic subspace of V.

Let \([m] = \{0,\ldots ,m-1\}\) for any integer \(m\ge 1\). For a subset \(I=\{i_1<\cdots <i_r\} \subseteq [n]\), let \(I' = \{i'_1<\cdots <i'_{n-r}\} = [n]\smallsetminus I\). Given such an I, the corresponding standard spinor is

$$ y_I := y_{\overline{\imath }'_1} \cdots y_{\overline{\imath }'_{n-r}}\cdot y. $$

These form a basis for \(\mathbb {S}\), as I ranges over all subsets of [n]. Note that \(y_\emptyset = y_{\overline{0}}\cdots y_{\overline{n-1}}\cdot y\), and

$$\begin{aligned} y_{i_1}\cdots y_{i_r}\cdot y_\emptyset = (-1)^{i_1+\cdots +i_r} y_I, \end{aligned}$$
(A.3)

which is sometimes useful.

The spin representation becomes an \(\mathfrak {so}_{2n}\)-module via the embedding \(\mathfrak {so}_{2n} \cong \textstyle \bigwedge ^2 V \hookrightarrow Cl(V)\) by

$$ v\wedge w \mapsto \frac{1}{2}(v\cdot w - w\cdot v) = v\cdot w - \frac{1}{2}\langle v,w \rangle 1. $$

So \(\mathfrak {so}_{2n}\) preserves the parity of basis vectors of Cl(V), and the spin representation breaks into two irreducible half-spin representations

$$ \mathbb {S}= \mathbb {S}^+ \oplus \mathbb {S}^-. $$

Our convention will be that \(\mathbb {S}^+\) is spanned by standard spinors \(y_I\), with I an even subset of [n], i.e., it has even cardinality.

Now let \(x_{\overline{n-1}},\ldots ,x_{\overline{0}},x_0,\ldots ,x_{{n-1}}\) be another orthogonal basis, and assume it is related to the \(y_i\)’s by a unitriangular matrix:

$$\begin{aligned} x_{\overline{\imath }} = y_{\overline{\imath }} + \sum _{j<i} \overline{c}_{ji} y_{\overline{\jmath }} + \sum _{j=0}^{n-1} c_{ji} y_j \end{aligned}$$

and

$$\begin{aligned} x_i = y_i + \sum _{j>i} b_{ji}y_j. \end{aligned}$$

Thus \(x=x_0\cdots x_{n-1}\) is equal to \(y=y_0\cdots y_{n-1}\).

We define pure spinors \(x_I\) analogously, by

$$ x_I := x_{\overline{\imath }'_1} \cdots x_{\overline{\imath }'_{n-r}}\cdot y. $$

Our goal is to compute the expansion of \(x_I\) in the basis \(y_K\).

In fact, we will be free to multiply by the inverse of the matrix \(\overline{C}=(\overline{c}_{ji})\) and assume that \(x_{\overline{\imath }}\) is written

$$\begin{aligned} x_{\overline{\imath }}&= y_{\overline{\imath }} + \sum _{j=0}^{n-1} a_{ji} y_j. \end{aligned}$$

In this case, the fact that the \(x_{\overline{\imath }}\) span an isotropic space is equivalent to the fact that the matrix \(A=(a_{ji})\) is skew-symmetric. Up to appropriately indexing rows and columns, the x basis is related to the y basis by a matrix of the form

$$ \left( \begin{array}{c|c} A &{} B \\ \hline w_\circ &{} 0\end{array}\right) , $$

where \(w_\circ \) is the matrix with 1’s on the antidiagonal and zeroes elsewhere. The top n rows determine a skew-symmetric matrix (by replacing \(w_\circ \) with \(-B^t\)). For a subset \(I\subseteq [n]\), let B(I) be the submatrix formed by taking columns I of B, and let A(I) be the skew-symmetric matrix

$$ A(I) = \left( \begin{array}{c|c} A &{} B(I) \\ \hline -B(I)^t &{} 0\end{array}\right) . $$

Only the top n rows are needed to perform operations with such a matrix. For instance, if \(n=3\) and \(I=\{1\}\), the top rows are

$$ \left( \begin{array}{ccc|ccc} 0 &{} a_{21} &{} a_{20} &{} b_{20} &{} b_{21} &{} 1 \\ &{} 0 &{} a_{10} &{} b_{10} &{} 1 &{} 0 \\ &{} &{} 0 &{} 1 &{} 0 &{} 0\end{array}\right) $$

and

$$ A(I) = \left( \begin{array}{ccc|c}0 &{} a_{21} &{} a_{20} &{} b_{21} \\ -a_{21} &{} 0 &{} a_{10} &{} 1 \\ -a_{20} &{} -a_{10} &{} 0 &{} 0 \\ \hline -b_{21} &{} -1 &{} 0 &{} 0\end{array}\right) $$

For even r, the Pfaffian of any \(r\times r\) skew-symmetric matrix A may be computed recursively using the Laplace-type expansion formula

$$ {{\,\mathrm{Pf}\,}}(A) = \sum _{j=1}^{r-1} (-1)^{j-1} a_{jr}{{\,\mathrm{Pf}\,}}_{\widehat{j,r}}(A), $$

where \({{\,\mathrm{Pf}\,}}_{\widehat{j,r}}(A)\) is the Pfaffian of the submatrix of A obtained by removing the jth and rth rows and columns. Let \({{\,\mathrm{Pf}\,}}_K(A)\) denote the Pfaffian of the submatrix on rows and columns K, and we always use the convention \({{\,\mathrm{Pf}\,}}_\emptyset (A)=1\).

Theorem

For a subset \(I\subseteq [n]\), we have

$$\begin{aligned} x_I = \mathop {\sum _{K\subseteq [n]}}_{K \text { even}} {{\,\mathrm{Pf}\,}}_K(A(I))\, y_K, \end{aligned}$$
(A.4)

where the sum is over subsets K of even cardinality.

See also [43, Corollary 2.4] for a related Pfaffian identity.

Proof

First we establish the formula for \(x_\emptyset \). In fact, for any \(m\le n\), we have

$$ x_{\overline{0}}\cdots x_{\overline{m-1}}\cdot y = \mathop {\sum _{K\subseteq [m]}}_{K \text { even}} {{\,\mathrm{Pf}\,}}_K(A)\, y_{\overline{k}'_1}\cdots y_{\overline{k}'_s}\cdot y, $$

where \(K' = \{k'_1<\cdots <k'_s\} = [m]\smallsetminus K\). This is proved by induction on m, the base case \(m=0\) being the tautology \(y=y\). For the induction step, we compute using the Laplace expansion formula:

$$\begin{aligned} x_{\overline{0}} \cdots x_{\overline{m}}\cdot y&= (-1)^m x_{\overline{m}} \cdot x_{\overline{0}} \cdots x_{\overline{m-1}}\cdot y \\&= (-1)^m \left( y_{\overline{m}} + \sum _{j=0}^{m-1} a_{jm} y_j \right) \sum _{K \subseteq [m]} {{\,\mathrm{Pf}\,}}_K(A) y_{\overline{k}'_1} \cdots y_{\overline{k}'_r} \cdot y \\&= \sum _{K \subseteq [m]} {{\,\mathrm{Pf}\,}}_K(A) y_{\overline{k}'_1} \cdots y_{\overline{k}'_r}\cdot y_{\overline{m}} \cdot y \\&\quad + \sum _{j=0}^{m-1}\sum _{K \subseteq [m]} (-1)^m a_{jm}{{\,\mathrm{Pf}\,}}_K(A) y_{j}\cdot y_{\overline{k}'_1} \cdots y_{\overline{k}'_r} \cdot y. \end{aligned}$$

Note

$$ y_j\cdot y_{\overline{k}'_1} \cdots y_{\overline{k}'_r} \cdot y = {\left\{ \begin{array}{ll} 0 &{}\text {if }j\in K; \\ (-1)^{a-1} y_{\overline{k}'_1} \cdots \widehat{y_{\overline{k}'_a}}\cdots y_{\overline{k}'_r} \cdot y &{}\text {if }j=k'_a \in K'. \end{array}\right. } $$

So the second sum above becomes

$$ \sum _K \sum _{j\not \in K} (-1)^{m+a-1} a_{jm} {{\,\mathrm{Pf}\,}}_K(A) y_{\overline{k}''_1} \cdots y_{\overline{k}''_{r-1}} \cdot y, $$

where \(K'' = K'\smallsetminus j\). Combining the two and using Laplace expansion yields the claimed formula for \(x_\emptyset \).

The general case is similar. Using (A.3), it is equivalent to show

$$ x_{i_1}\cdots x_{i_r}\cdot x_\emptyset = (-1)^{i_1+\cdots +i_r} \mathop {\sum _{K\subseteq [n]}}_{K \text { even}} {{\,\mathrm{Pf}\,}}_K(A(I))\, y_K, $$

and we do this by induction on r. Let \(I=\{i_1<\cdots <i_r\}\) and consider \(i>i_r\). We compute:

$$\begin{aligned} x_{i_1} \cdots x_{i_r} \cdot x_i \cdot x_\emptyset&= (-1)^{r} x_{i} \cdot x_{i_1} \cdots x_{i_r}\cdot x_\emptyset \\&= (-1)^r \left( \sum _{j} b_{ji} y_j \right) (-1)^{i_1+\cdots +i_r} \sum _{K} {{\,\mathrm{Pf}\,}}_K(A(I)) y_K \\&= (-1)^{r+i_1+\cdots +i_r} \sum _{j}\sum _{K \not \ni j} b_{ji}{{\,\mathrm{Pf}\,}}_K(A(I)) y_{j}\cdot y_K \\&= \cdots \\&= (-1)^{i+i_1+\cdots +i_r} \sum _K {{\,\mathrm{Pf}\,}}_K( A(I\cup \{i\}) ) y_K, \end{aligned}$$

as desired.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Anderson, D., Nigro, A. (2020). Minuscule Schubert Calculus and the Geometric Satake Correspondence. In: Hu, J., Li, C., Mihalcea, L.C. (eds) Schubert Calculus and Its Applications in Combinatorics and Representation Theory. ICTSC 2017. Springer Proceedings in Mathematics & Statistics, vol 332. Springer, Singapore. https://doi.org/10.1007/978-981-15-7451-1_6

Download citation

Publish with us

Policies and ethics