Skip to main content

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 332))

Included in the following conference series:

Abstract

The classical theory of symmetric functions has a central position in algebraic combinatorics, bridging aspects of representation theory, combinatorics, and enumerative geometry. More recently, this theory has been fruitfully extended to the larger ring of quasisymmetric functions, with corresponding applications. Here, we survey recent work extending this theory further to general asymmetric polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, David: \(K\)-theoretic Chern class formulas for vexillary degeneracy loci. Adv. Math. 350, 440–485 (2019)

    Article  MathSciNet  Google Scholar 

  2. Assaf, S., Searles, D.: Schubert polynomials, slide polynomials, Stanley symmetric functions and quasi-Yamanouchi pipe dreams. Adv. Math. 306, 89–122 (2017)

    Article  MathSciNet  Google Scholar 

  3. Assaf, S., Searles, D.: Kohnert tableaux and a lifting of quasi-Schur functions. J. Combin. Theory Ser. A 156, 85–118 (2018)

    Article  MathSciNet  Google Scholar 

  4. Sami Assaf, Combinatorial models for Schubert polynomials, preprint (2017), 29 pages, arXiv:1703.00088

  5. Sami Assaf, Multiplication of a Schubert polynomial by a Stanley symmetric polynomial, preprint (2017), 9 pages, arXiv:1702.00132

  6. Sami Assaf, A generalization of Edelman–Greene insertion for Schubert polynomials, preprint (2019), 28 pages, arXiv:1903.05802

  7. Bergeron, Nantel, Billey, Sara: RC-graphs and Schubert polynomials. Experiment. Math. 2(4), 257–269 (1993)

    Article  MathSciNet  Google Scholar 

  8. Bressler, Paul, Evens, Sam: The Schubert calculus, braid relations, and generalized cohomology. Trans. Amer. Math. Soc. 317(2), 799–811 (1990)

    Article  MathSciNet  Google Scholar 

  9. Billey, Sara C., Jockusch, William, Stanley, Richard P.: Some combinatorial properties of Schubert polynomials. J. Algebraic Combin. 2(4), 345–374 (1993)

    Article  MathSciNet  Google Scholar 

  10. Baker, Andrew, Richter, Birgit: Quasisymmetric functions from a topological point of view. Math. Scand. 103(2), 208–242 (2008)

    Article  MathSciNet  Google Scholar 

  11. Michel Brion, Positivity in the Grothendieck group of complex flag varieties, J. Algebra 258 (2002), no. 1, 137–159, Special issue in celebration of Claudio Procesi’s 60th birthday

    Google Scholar 

  12. Bump, Daniel, Schilling, Anne: Crystal bases: Representations and combinatorics, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2017)

    Book  Google Scholar 

  13. Valentin Buciumas, Travis Scrimshaw, and Katherine Weber, Colored five-vertex models and Lascoux polynomials and atoms, J. Lond. Math. Soc. 19 pages, preprint (2019) arXiv:1908.07364

  14. Anders Skovsted Buch: A Littlewood-Richardson rule for the \(K\)-theory of Grassmannians. Acta Math. 189(1), 37–78 (2002)

    Article  MathSciNet  Google Scholar 

  15. Ivan Cherednik, Nonsymmetric Macdonald polynomials, Int. Math. Res. Not. (1995), no. 10, 483–515

    Google Scholar 

  16. B. Calmès, K. Zainoulline, and C. Zhong, Equivariant oriented cohomology of flag varieties, Doc. Math. (2015), no. Extra vol.: Alexander S. Merkurjev’s sixtieth birthday, 113–144

    Google Scholar 

  17. M. Demazure, Une nouvelle formule des caractères, Bull. Sci. Math. (2) 98 (1974), no. 3, 163–172

    Google Scholar 

  18. Gérard Duchamp, Daniel Krob, Bernard Leclerc, and Jean-Yves Thibon, Fonctions quasi-symétriques, fonctions symétriques non commutatives et algèbres de Hecke à \(q=0\), C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 2, 107–112

    Google Scholar 

  19. Samuel Eilenberg and Saunders Mac Lane, On the groups of \(H(\Pi ,n)\). I, Ann. of Math. (2) 58 (1953), 55–106

    Google Scholar 

  20. Fomin, Sergey, Kirillov, Anatol N.: Grothendieck polynomials and the Yang-Baxter equation, pp. 183–189. DIMACS, Piscataway, NJ, Formal power series and algebraic combinatorics/Séries formelles et combinatoire algébrique (1994)

    Google Scholar 

  21. Sergey Fomin and Anatol N. Kirillov, The Yang-Baxter equation, symmetric functions, and Schubert polynomials, Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993), vol. 153, 1996, pp. 123–143

    Google Scholar 

  22. Fulton, William, Lascoux, Alain: A Pieri formula in the Grothendieck ring of a flag bundle. Duke Math. J. 76(3), 711–729 (1994)

    Article  MathSciNet  Google Scholar 

  23. William Fulton, Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997, With applications to representation theory and geometry

    Google Scholar 

  24. Galashin, Pavel: A Littlewood-Richardson rule for dual stable Grothendieck polynomials. J. Combin. Theory Ser. A 151, 23–35 (2017)

    Article  MathSciNet  Google Scholar 

  25. Maria Gillespie, Variations on a theme of Schubert calculus, Recent trends in algebraic combinatorics, Assoc. Women Math. Ser., vol. 16, Springer, Cham, 2019, pp. 115–158

    Google Scholar 

  26. Ganter, N., Ram, A.: Generalized Schubert calculus. J. Ramanujan Math. Soc. 28A, 149–190 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Darij Grinberg and Victor Reiner, Hopf algebras in combinatorics, preprint (2018), 235 pages, arXiv:1409.8356v5

  28. Hatcher, Allen: Algebraic topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  29. Hazewinkel, Michiel: The algebra of quasi-symmetric functions is free over the integers. Adv. Math. 164(2), 283–300 (2001)

    Article  MathSciNet  Google Scholar 

  30. Haglund, J., Luoto, K., Mason, S., van Willigenburg, S.: Quasisymmetric Schur functions. J. Combin. Theory Ser. A 118(2), 463–490 (2011)

    Article  MathSciNet  Google Scholar 

  31. Haglund, J., Luoto, K., Mason, S., van Willigenburg, S.: Refinements of the Littlewood-Richardson rule. Trans. Amer. Math. Soc. 363(3), 1665–1686 (2011)

    Article  MathSciNet  Google Scholar 

  32. Zachary Hamaker, Oliver Pechenik, and Anna Weigandt, Gröbner geometry of Schubert polynomials through ice, in preparation (2019)

    Google Scholar 

  33. Hudson, Thomas: A Thom-Porteous formula for connective \(K\)-theory using algebraic cobordism. J. K-Theory 14(2), 343–369 (2014)

    Article  MathSciNet  Google Scholar 

  34. Ion, Bogdan: Nonsymmetric Macdonald polynomials and Demazure characters. Duke Math. J. 116(2), 299–318 (2003)

    Article  MathSciNet  Google Scholar 

  35. Kashiwara, Masaki: Crystalizing the \(q\)-analogue of universal enveloping algebras. Comm. Math. Phys. 133(2), 249–260 (1990)

    Article  MathSciNet  Google Scholar 

  36. Kashiwara, Masaki: On crystal bases of the \(Q\)-analogue of universal enveloping algebras. Duke Math. J. 63(2), 465–516 (1991)

    Article  MathSciNet  Google Scholar 

  37. Kashiwara, Masaki: The crystal base and Littelmann’s refined Demazure character formula. Duke Math. J. 71(3), 839–858 (1993)

    Article  MathSciNet  Google Scholar 

  38. A.N. Kirillov, Notes on Schubert, Grothendieck and key polynomials, SIGMA Symmetry Integrability Geom. Methods Appl. 12 (2016), Paper No. 034, 1–56

    Google Scholar 

  39. Allen Knutson and Ezra Miller, Gröbner geometry of Schubert polynomials, Ann. of Math. (2) 161 (2005), no. 3, 1245–1318

    Google Scholar 

  40. A. Kohnert, Weintrauben, Polynome, Tableaux, Bayreuth. Math. Schr. (1991), no. 38, 1–97, Dissertation, Universität Bayreuth, Bayreuth, 1990

    Google Scholar 

  41. Witold Kraśkiewicz and Piotr Pragacz, Foncteurs de Schubert, C. R. Acad. Sci. Paris Sér. I Math. 304 (1987), no. 9, 209–211

    Google Scholar 

  42. Kraśkiewicz, Witold, Pragacz, Piotr: Schubert functors and Schubert polynomials. European J. Combin. 25(8), 1327–1344 (2004)

    Article  MathSciNet  Google Scholar 

  43. Daniel Krob and Jean-Yves Thibon, Noncommutative symmetric functions. IV. Quantum linear groups and Hecke algebras at q=0, J. Algebraic Combin. 6 (1997), no. 4, 339–376

    Google Scholar 

  44. Lascoux, A., Transition on Grothendieck polynomials, Physics and combinatorics, : (Nagoya), World Sci. Publ. River Edge, NJ 2001, 164–179 (2000)

    Google Scholar 

  45. Alain Lascoux, Chern and Yang through ice, preprint (2002), www-igm.univ-mlv.fr/ al/ARTICLES/ChernYang.ps.gz

    Google Scholar 

  46. Cristian Lenart, Combinatorial aspects of the K-theory of Grassmannians., Ann. Comb. 4 (2000), no. 1, 67–82

    Google Scholar 

  47. D. E. Littlewood, The construction of invariant matrices, Proc. London Math. Soc. (2) 43 (1937), no. 3, 226–240

    Google Scholar 

  48. Dudley, E.: Littlewood. Oxford University Press, New York, The Theory of Group Characters and Matrix Representations of Groups (1940)

    Google Scholar 

  49. Thomas Lam, Seung Jin Lee, and Mark Shimozono, Back stable Schubert calculus, preprint (2018), 63 pages, arXiv:1806.11233

  50. Kurt Luoto, Stefan Mykytiuk, and Stephanie van Willigenburg, An introduction to quasisymmetric Schur functions, SpringerBriefs in Mathematics, Springer, New York, 2013, Hopf algebras, quasisymmetric functions, and Young composition tableaux

    Google Scholar 

  51. Thomas Lam and Pavlo Pylyavskyy, Combinatorial Hopf algebras and K-homology of Grassmannians, Int. Math. Res. Not. IMRN (2007), no. 24, Art. ID rnm125, 48

    Google Scholar 

  52. Alain Lascoux and Marcel-Paul Schützenberger, Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 11, 629–633

    Google Scholar 

  53. Alain Lascoux and Marcel-Paul Schützenberger, Symmetry and flag manifolds., Invariant theory, Proc. 1st 1982 Sess. C.I.M.E., Montecatini/Italy, Lect. Notes Math. 996, 118-144 (1983)., 1983

    Google Scholar 

  54. Lascoux, A., Schützenberger, M.-P., Keys & standard bases, Invariant theory and tableaux (Minneapolis, MN, : IMA Vol. Math. Appl., vol. 19. Springer, New York 1990, 125–144 (1988)

    Google Scholar 

  55. Lenart, C., Zainoulline, K.: A Schubert basis in equivariant elliptic cohomology. New York J. Math. 23, 711–737 (2017)

    MathSciNet  MATH  Google Scholar 

  56. Cristian Lenart and Kirill Zainoulline, Towards generalized cohmology Schubert calculus via formal root polynomials., Math. Res. Lett. 24 (2017), no. 3, 839–877

    Google Scholar 

  57. I. G. Macdonald, Affine Hecke algebras and orthogonal polynomials, Astérisque 237 (1996), 189–207, Séminaire Bourbaki, Exp. No. 797 Vol. 1994/95

    Google Scholar 

  58. I. G. Macdonald, Symmetric functions and Hall polynomials, second ed., Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015, With contribution by A. V. Zelevinsky and a foreword by Richard Stanley, Reprint of the 2008 paperback edition

    Google Scholar 

  59. Laurent Manivel, Symmetric functions, Schubert polynomials and degeneracy loci, SMF/AMS Texts and Monographs, vol. 6, American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, 2001, Translated from the 1998 French original by John R. Swallow, Cours Spécialisés [Specialized Courses], 3

    Google Scholar 

  60. Mason, S.: A decomposition of Schur functions and an analogue of the Robinson-Schensted-Knuth algorithm. Sém. Lothar. Combin. 57, B57e (2008)

    MathSciNet  MATH  Google Scholar 

  61. Sarah K. Mason, Recent trends in quasisymmetric functions, Recent trends in algebraic combinatorics, Assoc. Women Math. Ser., vol. 16, Springer, Cham, 2019, pp. 239–279

    Google Scholar 

  62. Cara Monical, Set-valued skyline fillings, preprint (2016), 17 pages, arXiv:1611.08777

  63. Cara Monical, Oliver Pechenik, and Travis Scrimshaw, Crystal structures for symmetric Grothendieck polynomials, Transformation Groups, preprint (2018), 47 pages arXiv:1807.03294

  64. Cara Monical, Oliver Pechenik, and Dominic Searles, Polynomials from combinatorial K-theory, Canad. J. Math., to appear (2019), 35 pages, arXiv:1806.03802

  65. Norton, P.N.: \(0\)-Hecke algebras. J. Austral. Math. Soc. Ser. A 27(3), 337–357 (1979)

    Article  MathSciNet  Google Scholar 

  66. Jakob Oesinghaus, Quasisymmetric functions and the Chow ring of the stack of expanded pairs, Res. Math. Sci. 6 (2019), no. 1, Paper No. 5, 18

    Google Scholar 

  67. Opdam, Eric: Harmonic analysis for certain representations of graded Hecke algebras. Acta Math. 1, 75–121 (1995)

    Article  MathSciNet  Google Scholar 

  68. Rebecca Patrias, Antipode formulas for some combinatorial Hopf algebras, Electron. J. Combin. 23 (2016), no. 4, Paper 4.30, 32

    Google Scholar 

  69. Oliver Pechenik, The genomic Schur function is fundamental-positive, Ann. Comb. 24, 95–108 (2020), arXiv:1810.04727, https://link.springer.com/article/10.1007/s00026-019-00483-2

  70. Oliver Pechenik and Travis Scrimshaw, K-theoretic crystals for set-valued tableaux of rectangular shapes, preprint (2019), 20 pages, arXiv:1904.09674

  71. Oliver Pechenik and Dominic Searles, Decompositions of Grothendieck polynomials, Int. Math. Res. Not. IMRN (2019), no. 10, 3214–3241

    Google Scholar 

  72. A. Pun, On deposition of the product of Demazure atoms and Demazure characters, preprint (2016), 86 pages, arXiv:1606.02291

  73. Pechenik, Oliver, Yong, Alexander: Genomic tableaux. J. Algebraic Combin. 45(3), 649–685 (2017)

    Article  MathSciNet  Google Scholar 

  74. Reiner, V., Shimozono, M.: Key polynomials and a flagged Littlewood-Richardson rule. J. Combin. Theory Ser. A 70(1), 107–143 (1995)

    Article  MathSciNet  Google Scholar 

  75. C. Ross and A. Yong, Combinatorial rules for three bases of polynomials, Sém. Lothar. Combin. 74 (2015), Art. B74a, 11 pages

    Google Scholar 

  76. Yasmine, B.: Sanderson, On the connection between Macdonald polynomials and Demazure characters. J. Algebraic Combin. 11(3), 269–275 (2000)

    Article  MathSciNet  Google Scholar 

  77. Dominic Searles, Polynomial bases: positivity and Schur multiplication, Trans. Amer. Math. Soc., in press (2019), 29 pages, https://doi.org/10.1090/tran/7670

    Google Scholar 

  78. Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999, With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin

    Google Scholar 

  79. Tewari, Vasu V., van Willigenburg, Stephanie J.: Modules of the 0-Hecke algebra and quasisymmetric Schur functions. Adv. Math. 285, 1025–1065 (2015)

    Article  MathSciNet  Google Scholar 

  80. Thomas, Hugh, Yong, Alexander: A jeu de taquin theory for increasing tableaux, with applications to \(K\)-theoretic Schubert calculus. Algebra Number Theory 3(2), 121–148 (2009)

    Article  MathSciNet  Google Scholar 

  81. R. Vakil, A geometric Littlewood-Richardson rule, Ann. of Math. (2) 164 (2006), no. 2, 371–421, Appendix A written with A. Knutson

    Google Scholar 

  82. Watanabe, Masaki: Tensor product of Kraśkiewicz-Pragacz modules. J. Algebra 443, 422–429 (2015)

    Article  MathSciNet  Google Scholar 

  83. Watanabe, Masaki: An approach towards Schubert positivities of polynomials using Kraśkiewicz-Pragacz modules. European J. Combin. 58, 17–33 (2016)

    Article  MathSciNet  Google Scholar 

  84. Anna Weigandt, Bumpless pipe dreams and alternating sign matrices, in preparation (2019)

    Google Scholar 

  85. George, W.: Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61. Springer-Verlag, New York-Berlin (1978)

    Google Scholar 

  86. Winkel, Rudolf: Diagram rules for the generation of Schubert polynomials. J. Combin. Theory Ser. A 86(1), 14–48 (1999)

    Article  MathSciNet  Google Scholar 

  87. Rudolf Winkel, A derivation of Kohnert’s algorithm from Monk’s rule, Sém. Lothar. Combin. 48 (2002), Art. B48f, 14 pages

    Google Scholar 

Download references

Acknowledgements

OP was partially supported by a Mathematical Sciences Postdoctoral Research Fellowship (#1703696) from the National Science Foundation. We are grateful to the many people who taught us about polynomials and, over many years, have influenced the way we think about the three worlds. It seems hopeless to provide a full accounting of our influences, but in particular we wish to thank Sami Assaf, Alain Lascoux, Cara Monical, Stephanie van Willigenburg, and our common advisor Alexander Yong. We are also thankful for the detailed and helpful comments of two anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Pechenik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pechenik, O., Searles, D. (2020). Asymmetric Function Theory. In: Hu, J., Li, C., Mihalcea, L.C. (eds) Schubert Calculus and Its Applications in Combinatorics and Representation Theory. ICTSC 2017. Springer Proceedings in Mathematics & Statistics, vol 332. Springer, Singapore. https://doi.org/10.1007/978-981-15-7451-1_5

Download citation

Publish with us

Policies and ethics