Skip to main content

ALMA Observation of the Protoplanetary Disk Around HD 163296

  • Chapter
  • First Online:
Water Snowline in Protoplanetary Disks

Part of the book series: Springer Theses ((Springer Theses))

  • 152 Accesses

Abstract

We have conducted the water line observations for the protoplanetary disk around the Herbig Ae star HD 163296, and partial data were delivered. We analyzed the upper limit fluxes of sub-millimeter ortho-H\(_{2}\) \(^{16}\)O 321 GHz, para-H\(_{2}\) \(^{18}\)O 322 GHz, and HDO 335 GHz lines, which are considered to be the best candidate water lines available at sub-millimeter wavelengths to locate the \(\mathrm {H_2O}\) snowline positions, according to our previous model studies. We compared the upper limit fluxes with the values obtained using our models with dust emission, and constrained the line emitting region and the dust opacity from observations. We concluded that, if the outer edge of the water vapor abundant region and also the water snowline position is beyond 8 au, the 1 mm dust opacity \(\kappa _{\mathrm {mm}}\) will have a value larger than 2.0 cm\(^{2}\) g\(^{-1}\). Moreover, if \(\kappa _{\mathrm {mm}}\) is 2.0 cm\(^{2}\) g\(^{-1}\), the water snowline position will be inside 20 au. The multiple gap and ring structures in 0.9 mm (Band 7) dust continuum emission with the spatial resolution of 15 au are also reported. The gap and ring positions are consistent with those estimated in the previous observations. Most contents of this chapter is based on our refereed paper that has been published (Notsu et al. 2019, ApJ, 875, 96).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.cosmos.esa.int/web/gaia/dr2.

  2. 2.

    The value is the root-mean-square value of peak flux density.

  3. 3.

    http://home.strw.leidenuniv.nl/~michiel/ratran/.

  4. 4.

    http://home.strw.leidenuniv.nl/~moldata/.

  5. 5.

    http://www.hitran.org.

References

  1. Aikawa Y, Nomura H (2006) ApJ 642:1152

    ADS  Google Scholar 

  2. Akiyama E, Hasegawa Y, Hayashi M, Iguchi S (2016) ApJ 818:158

    ADS  Google Scholar 

  3. Akiyama E, Momose M, Hayashi H, Kitamura Y (2011) PASJ 63:1059

    ADS  Google Scholar 

  4. Akiyama E, Muto T, Kusakabe N et al (2015) ApJL 802:L17

    ADS  Google Scholar 

  5. ALMA Partnership, Brogan CL, Pérez LM et al (2015) ApJL 808:L3

    Google Scholar 

  6. Andrews SM, Huang J, Pérez LM et al (2019) ApJL 869:L41

    ADS  Google Scholar 

  7. Andrews SM, Wilner DJ, Zhu Z et al (2016) ApJL 820:L40

    ADS  Google Scholar 

  8. Banzatti A, Pinilla P, Ricci L et al (2015) ApJL 815:L15

    ADS  Google Scholar 

  9. Bergin EA, Cleeves LI, Gorti U et al (2013) Nature 493:644

    ADS  Google Scholar 

  10. Béthune W, Lesur G, Ferreira J (2016) A&A 589:A87

    ADS  Google Scholar 

  11. Boneberg DM, Panić O, Haworth TJ, Clarke CJ, Min M (2016) MNRAS 461:385

    ADS  Google Scholar 

  12. Booth AS, Ilee JD (2020) MNRAS 493:L108

    ADS  Google Scholar 

  13. Booth AS, Walsh C, Ilee JD et al (2019) ApJL 882:L31

    ADS  Google Scholar 

  14. Booth AS, Walsh C, Kama M et al (2018a) A&A 611:A16

    ADS  Google Scholar 

  15. Ceccarelli C, Caselli P, Bockelée-Morvan D et al (2014) Protostars and Planets VI 859

    Google Scholar 

  16. Carr JS, Najita JR, Salyk C (2018) Res Notes Am Astronom Soc 2:169

    ADS  Google Scholar 

  17. Carney MT, Hogerheijde MR, Guzmán VV et al (2019) A&A 623:A124

    ADS  Google Scholar 

  18. Carney MT, Fedele D, Hogerheijde MR et al (2018) A&A 614:A106

    ADS  Google Scholar 

  19. Carney MT, Hogerheijde MR, Loomis RA et al (2017) A&A 605:A21

    ADS  Google Scholar 

  20. Carrasco-González C, Henning T, Chandler CJ et al (2016) ApJL 821:L16

    ADS  Google Scholar 

  21. Dent WRF, Greaves JS, Coulson IM (2005) MNRAS 359:663

    ADS  Google Scholar 

  22. Dent WRF, Pinte C, Cortes PC et al (2019) MNRAS 482:L29

    ADS  Google Scholar 

  23. Dong R, Li S, Chiang E, Li H (2018) ApJ 866:110

    ADS  Google Scholar 

  24. Draine BT (2006) ApJ 636:1114

    ADS  Google Scholar 

  25. Favre C, Cleeves LI, Bergin EA, Qi C, Blake GA (2013) ApJL 776:L38

    ADS  Google Scholar 

  26. Fedele D, Bruderer S, van Dishoeck EF et al (2012) A&A 544:LL9

    Google Scholar 

  27. Fedele D, Bruderer S, van Dishoeck EF et al (2013) A&A 559:AA77

    Google Scholar 

  28. Flock M, Ruge JP, Dzyurkevich N et al (2015) A&A 574:A68

    ADS  Google Scholar 

  29. Furuya K, Aikawa Y, Nomura H, Hersant F, Wakelam V (2013) ApJ 779:11

    ADS  Google Scholar 

  30. Furuya K, Drozdovskaya MN, Visser R et al (2017) A&A 599:A40

    ADS  Google Scholar 

  31. Furuya K, van Dishoeck EF, Aikawa Y (2016) A&A 586:A127

    ADS  Google Scholar 

  32. Gaia Collaboration, Brown AGA, Vallenari A et al (2018) A&A 616:A1

    Google Scholar 

  33. Guidi G, Ruane G, Williams JP et al (2018) MNRAS 479:1505

    ADS  Google Scholar 

  34. Guidi G, Tazzari M, Testi L et al (2016) A&A 588:A112

    ADS  Google Scholar 

  35. Hama T, Kouchi A, Watanabe N (2016) Science 351:65

    ADS  Google Scholar 

  36. Hama T, Kouchi A, Watanabe N (2018) ApJL 857:L13

    ADS  Google Scholar 

  37. Hama T, Watanabe N (2013) Chem Rev 113:8783

    Google Scholar 

  38. Hogerheijde MR, van der Tak FFS (2000) A&A 362:697

    ADS  Google Scholar 

  39. Honda M, Maaskant K, Okamoto YK et al (2015) ApJ 804:143

    ADS  Google Scholar 

  40. Huang J, Andrews SM, Cleeves LI et al (2018) ApJ 852:122

    ADS  Google Scholar 

  41. Huang J, Andrews SM, Dullemond CP et al (2018) ApJL 869:L42

    ADS  Google Scholar 

  42. Huang J, Andrews SM, Pérez LM et al (2018) ApJL 869:L43

    ADS  Google Scholar 

  43. Isella A, Guidi G, Testi L et al (2016) Phys Rev Lett 117:251101

    ADS  Google Scholar 

  44. Isella A, Huang J, Andrews SM et al (2019) ApJL 869:L49

    ADS  Google Scholar 

  45. Jin S, Li S, Isella A, Li H, Ji J (2016) ApJ 818:76

    ADS  Google Scholar 

  46. Kanagawa KD, Muto T, Tanaka H et al (2015a) ApJL 806:L15

    ADS  Google Scholar 

  47. Kanagawa KD, Muto T, Tanaka H et al (2016) PASJ 68:43

    ADS  Google Scholar 

  48. Kanagawa KD, Tanaka H, Muto T, Tanigawa T, Takeuchi T (2015b) MNRAS 448:994

    ADS  Google Scholar 

  49. Kanagawa KD, Tanaka H, Szuszkiewicz E (2018) ApJ 861:140

    ADS  Google Scholar 

  50. Liu S-F, Jin S, Li S, Isella A, Li H (2018) ApJ 857:87

    ADS  Google Scholar 

  51. Loomis RA, Öberg KI, Andrews SM et al (2018) AJ 155:182

    ADS  Google Scholar 

  52. Lorén-Aguilar P, Bate MR (2015) MNRAS 453:L78

    ADS  Google Scholar 

  53. Manara CF, Morbidelli A, Guillot T (2018) A&A 618:L3

    ADS  Google Scholar 

  54. Mathews GS, Klaassen PD, Juhász A et al (2013) A&A 557:A132

    ADS  Google Scholar 

  55. Meeus G, Montesinos B, Mendigutía I et al (2012) A&A 544:AA78

    Google Scholar 

  56. Mesa D, Langlois M, Garufi A et al (2019) MNRAS 488:37

    ADS  Google Scholar 

  57. Miyake K, Nakagawa Y (1993) Icarus 106:20

    ADS  Google Scholar 

  58. Monnier JD, Harries TJ, Aarnio A et al (2017) ApJ 838:20

    ADS  Google Scholar 

  59. Mumma MJ, Weaver HA, Larson HP (1987) A&A 187:419

    ADS  Google Scholar 

  60. Nomura H, Millar TJ (2005) A&A 438:923

    ADS  Google Scholar 

  61. Nomura H, Aikawa Y, Tsujimoto M, Nakagawa Y, Millar TJ (2007) ApJ 661:334

    ADS  Google Scholar 

  62. Nomura H, Tsukagoshi T, Kawabe R et al (2016) ApJL 819:L7

    ADS  Google Scholar 

  63. Notsu S, Nomura H, Walsh C et al (2019) ApJ 875:96 (paper IV)

    Google Scholar 

  64. Notsu S, Nomura H, Walsh C et al (2018) ApJ 855:62 (paper III)

    Google Scholar 

  65. Notsu S, Nomura H, Ishimoto D, Walsh C, Honda M, Hirota T, Millar TJ (2017) ApJ 836:118 (paper II)

    Google Scholar 

  66. Notsu S, Nomura H, Ishimoto D, Walsh C, Honda M, Hirota T, Millar TJ (2016) ApJ 827:113 (paper I)

    Google Scholar 

  67. Notsu S, Nomura H, Ishimoto D et al (2015) Revolution in Astronomy with ALMA: The Third Year In: Iono D et al (eds) ASP ASP Conference Series 499. ASP, San Francisco, CA, p 289

    Google Scholar 

  68. Ohashi S, Kataoka A (2019) ApJ 886:103

    ADS  Google Scholar 

  69. Okuzumi S, Momose M, Sirono S-I, Kobayashi H, Tanaka H (2016) ApJ 821:82

    ADS  Google Scholar 

  70. Perryman MAC, Lindegren L, Kovalevsky J et al (1997) A&A 323:L49

    ADS  Google Scholar 

  71. Pinilla P, Benisty M, Birnstiel T et al (2014) A&A 564:A51

    ADS  Google Scholar 

  72. Pinilla P, Flock M, Ovelar MdJ, Birnstiel T (2016) A&A 596:A81

    Google Scholar 

  73. Pinilla P, Pohl A, Stammler SM, Birnstiel T (2017) ApJ 845:68

    ADS  Google Scholar 

  74. Pinte C, Dent WRF, Ménard F et al (2016) ApJ 816:25

    ADS  Google Scholar 

  75. Pinte C, Price DJ, Ménard F et al (2018) ApJL 860:L13

    ADS  Google Scholar 

  76. Qi C, D’Alessio P, Öberg KI et al (2011) ApJ 740:84

    ADS  Google Scholar 

  77. Qi C, Öberg KI, Andrews SM et al (2015) ApJ 813:128

    ADS  Google Scholar 

  78. Rapson VA, Kastner JH, Millar-Blanchaer MA, Dong R (2015) ApJL 815:L26

    ADS  Google Scholar 

  79. Reboussin L, Wakelam V, Guilloteau S, Hersant F, Dutrey A (2015) A&A 579:A82

    ADS  Google Scholar 

  80. Ros K, Johansen A (2013) A&A 552:A137

    ADS  Google Scholar 

  81. Rothman LS, Gordon IE, Babikov Y et al (2013) JQSRT 130:4

    ADS  Google Scholar 

  82. Ruge JP, Flock M, Wolf S et al (2016) A&A 590:A17

    ADS  Google Scholar 

  83. Salinas VN, Hogerheijde MR, Mathews GS et al (2017) A&A 606:A125

    ADS  Google Scholar 

  84. Salinas VN, Hogerheijde MR, Murillo NM et al (2018) A&A 616:A45

    ADS  Google Scholar 

  85. Schöier FL, van der Tak FFS, van Dishoeck EF, Black JH (2005) A&A 432:369

    ADS  Google Scholar 

  86. Schoonenberg D, Okuzumi S, Ormel CW (2017) A&A 605:L28

    Google Scholar 

  87. Schwarz KR, Bergin EA, Cleeves LI et al (2016) ApJ 823:91

    ADS  Google Scholar 

  88. Schwarz KR, Bergin EA, Cleeves LI et al (2018) ApJ 856:85

    ADS  Google Scholar 

  89. Takahashi SZ, Inutsuka S-I (2014) ApJ 794:55

    ADS  Google Scholar 

  90. Takahashi SZ, Inutsuka S-I (2016) AJ 152:184

    ADS  Google Scholar 

  91. Teague R, Bae J, Bergin EA, Birnstiel T, Foreman-Mackey D (2018) ApJL 860:L12

    ADS  Google Scholar 

  92. Tominaga RT, Inutsuka S-I, Takahashi SZ (2018) PASJ 70:3

    ADS  Google Scholar 

  93. Trapman L, Miotello A, Kama M et al (2017) A&A 605:A69

    ADS  Google Scholar 

  94. Tsukagoshi T, Nomura H, Muto T et al (2016) ApJL 829:L35

    ADS  Google Scholar 

  95. van Boekel R, Henning T, Menu J et al (2017) ApJ 837:132

    ADS  Google Scholar 

  96. van den Ancker ME, The PS, Tjin A Djie HRE et al (1997) A&A 324:L33

    Google Scholar 

  97. van der Marel N, Williams JP, Bruderer S (2018) ApJL 867:L14

    ADS  Google Scholar 

  98. van Dishoeck EF, Bergin EA, Lis DC, Lunine JI (2014) Protostars and Planets VI. In Beuther H et al (eds) Univ. Arizona Press, Tucson, AZ, p 835

    Google Scholar 

  99. Walsh C, Millar TJ, Nomura H (2010) ApJ 722:1607

    ADS  Google Scholar 

  100. Walsh C, Nomura H, Millar TJ, Aikawa Y (2012) ApJ 747:114

    ADS  Google Scholar 

  101. Walsh C, Nomura H, van Dishoeck E (2015) A&A 582:A88

    ADS  Google Scholar 

  102. Wilson TL, Rood R (1994) ARA&A 32:191

    ADS  Google Scholar 

  103. Woodall J, Agúndez M, Markwick-Kemper AJ, Millar TJ (2007) A&A 466:1197

    ADS  Google Scholar 

  104. Zhang K, Bergin EA, Blake GA et al (2016) ApJL 818:L16

    ADS  Google Scholar 

  105. Zhang K, Bergin EA, Blake GA et al (2017) Nat Astron 1:0130

    ADS  Google Scholar 

  106. Zhang K, Blake GA, Bergin EA (2015) ApJL 806:L7

    ADS  Google Scholar 

  107. Zhang K, Bosman AD, Bergin EA (2020) ApJL 891:L16

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shota Notsu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Notsu, S. (2020). ALMA Observation of the Protoplanetary Disk Around HD 163296. In: Water Snowline in Protoplanetary Disks. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-15-7439-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7439-9_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7438-2

  • Online ISBN: 978-981-15-7439-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics