Skip to main content

Modeling Studies III. Sub-millimeter H\(_{2}\) \(^{16}\)O and H\(_{2}\) \(^{18}\)O Lines

  • Chapter
  • First Online:
Water Snowline in Protoplanetary Disks

Part of the book series: Springer Theses ((Springer Theses))

  • 142 Accesses

Abstract

In this chapter, we extend the results presented in our former papers [41, 42] on using ortho-\(\mathrm {H_2}\) \(^{16}\mathrm {O}\) line profiles to constrain the location of the \(\mathrm {H_2O}\) snowline in T Tauri and Herbig Ae disks, to include sub-millimeter para-\(\mathrm {H_2}\) \(^{16}\mathrm {O}\) and ortho- and para-\(\mathrm {H_2}\) \(^{18}\mathrm {O}\) lines. Since the number densities of the ortho- and para-H\(_{2}\) \(^{18}\)O molecules are about 1/560 times smaller than their \(^{16}\)O analogues, they trace deeper into the disk than the ortho-H\(_{2}\) \(^{16}\)O lines (down to \(z=0\)), and lines with relatively smaller upper state energies (\(\sim \)a few 100 K) can also locate the \(\mathrm {H_2O}\) snowline positions. Thus these H\(_{2}\) \(^{18}\)O lines are potentially better probes of the H\(_{2}\)O snowline positions at the disk midplane, depending on the dust optical depth. The values of the Einstein A coefficients of sub-millimeter candidate water lines tend to be lower (typically \(10^{-4}\) s\(^{-1}\)) than infrared candidate water lines. Thus in the sub-millimeter candidate water line cases, the local intensity from the outer optically thin region in the disk is around \(10^{4}\) times smaller than that in the infrared candidate water line cases. Therefore, in the sub-millimeter lines, especially H\(_{2}\) \(^{18}\)O and para-H\(_{2}\) \(^{16}\)O lines with relatively lower upper state energies (\(\sim \)a few 100 K) can also locate the position of the \(\mathrm {H_2O}\) snowline. We also investigate the possibility of future observations with ALMA to identify the water snowline position. There are several candidate water lines that trace the hot water vapor inside the \(\mathrm {H_2O}\) snowline in ALMA Bands 5–10. Most contents of this chapter is based on our refereed paper that has been published (Notsu et al. 2018, ApJ, 855, 62).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the remainder of this thesis, we often mention [42] and [41] as papers I and II, respectively.

  2. 2.

    http://home.strw.leidenuniv.nl/~michiel/ratran/.

  3. 3.

    http://www.hitran.org.

  4. 4.

    http://home.strw.leidenuniv.nl/~moldata/.

  5. 5.

    http://www.cv.nrao.edu/php/splat/.

  6. 6.

    \(<\sigma v>\) is the collisional rates for the excitation of \(\mathrm {H_2O}\) molecules by electrons and H\(_{\mathrm {2}}\) molecules for an adopted value of the collisional temperature of 200 K [11].

References

  1. Aikawa Y, Nomura H (2006) ApJ 642:1152

    Google Scholar 

  2. ALMA Partnership, Brogan CL, Pérez LM et al (2015) ApJL 808:L3

    Google Scholar 

  3. Antonellini S, Kamp I, Lahuis F et al (2016) A&A 585:A61

    ADS  Google Scholar 

  4. Antonellini S, Kamp I, Riviere-Marichalar P et al (2015) A&A 582:A105

    ADS  Google Scholar 

  5. Banzatti A, Meyer MR, Bruderer S et al (2012) ApJ 745:90

    ADS  Google Scholar 

  6. Banzatti A, Pinilla P, Ricci L et al (2015) ApJL 815:L15

    ADS  Google Scholar 

  7. Cieza LA, Casassus S, Tobin J et al (2016) Nature 535:258

    ADS  Google Scholar 

  8. Draine BT (2006) ApJ 636:1114

    ADS  Google Scholar 

  9. Du F, Bergin EA, Hogerheijde M et al (2017) ApJ 842:98

    ADS  Google Scholar 

  10. Eistrup C, Walsh C, van Dishoeck EF (2016) A&A 595:A83

    ADS  Google Scholar 

  11. Faure A, Josselin E (2008) A&A 492:257

    ADS  Google Scholar 

  12. Fedele D, Bruderer S, van Dishoeck EF et al (2012) A&A 544:LL9

    Google Scholar 

  13. Fedele D, Bruderer S, van Dishoeck EF et al (2013) A&A 559:AA77

    Google Scholar 

  14. Fedele D, Pascucci I, Brittain S et al (2011) ApJ 732:106

    ADS  Google Scholar 

  15. Furuya K, Aikawa Y, Nomura H, Hersant F, Wakelam V (2013) ApJ 779:11

    ADS  Google Scholar 

  16. Graedel TE, Langer WD, Frerking MA (1982) ApJS 48:321

    ADS  Google Scholar 

  17. Hama T, Kouchi A, Watanabe N (2016) Science 351:65

    ADS  Google Scholar 

  18. Hama T, Watanabe N (2013) Chem Rev 113:8783

    Google Scholar 

  19. Harsono D, Bruderer S, van Dishoeck EF (2015) A&A 582:A41

    ADS  Google Scholar 

  20. Heinzeller D, Nomura H, Walsh C, Millar TJ (2011) ApJ 731:115

    ADS  Google Scholar 

  21. Hirota T, Kim MK, Kurono Y, Honma M (2014) ApJL 782:L28

    ADS  Google Scholar 

  22. Hogerheijde MR, Bergin EA, Brinch C et al (2011) Science 334:338

    ADS  Google Scholar 

  23. Hogerheijde MR, van der Tak FFS (2000) A&A 362:697

    ADS  Google Scholar 

  24. Honda M, Maaskant K, Okamoto YK et al (2015) ApJ 804:143

    ADS  Google Scholar 

  25. Humphreys E, Biggs A, Immer K et al (2017) The Messenger 167:7

    ADS  Google Scholar 

  26. Immer K, Belitsky V, Olberg M et al (2016) The Messenger 165:13

    ADS  Google Scholar 

  27. Jacq T, Henkel C, Walmsley CM, Jewell PR, Baudry A (1988) A&A 199:L5

    ADS  Google Scholar 

  28. Jørgensen JK, van Dishoeck EF (2010) ApJL 710:L72

    ADS  Google Scholar 

  29. Krijt S, Ciesla FJ, Bergin EA (2016) ApJ 833:285

    ADS  Google Scholar 

  30. Kristensen LE, Brown JM, Wilner D, Salyk C (2016) ApJL 822:L20

    ADS  Google Scholar 

  31. Mathis JS, Rumpl W, Nordsieck KH (1977) ApJ 217:425

    ADS  Google Scholar 

  32. Meeus G, Montesinos B, Mendigutía I et al (2012) A&A 544:AA78

    Google Scholar 

  33. Meijerink R, Poelman DR, Spaans M, Tielens AGGM, Glassgold AE (2008) ApJL 689:L57

    ADS  Google Scholar 

  34. Meijerink R, Pontoppidan KM, Blake GA, Poelman DR, Dullemond CP (2009) ApJ 704:1471

    ADS  Google Scholar 

  35. Miyake K, Nakagawa Y (1993) Icarus 106:20

    ADS  Google Scholar 

  36. Mumma MJ, Weaver HA, Larson HP (1987) A&A 187:419

    ADS  Google Scholar 

  37. Nomura H, Millar TJ (2005) A&A 438:923

    ADS  Google Scholar 

  38. Nomura H, Aikawa Y, Tsujimoto M, Nakagawa Y, Millar TJ (2007) ApJ 661:334

    ADS  Google Scholar 

  39. Notsu S, Nomura H, Walsh C et al (2019) ApJ, 875:96 (paper IV)

    Google Scholar 

  40. Notsu S, Nomura H, Walsh C et al (2018) ApJ 855:62 (paper III)

    Google Scholar 

  41. Notsu S, Nomura H, Ishimoto D, Walsh C, Honda M, Hirota T, Millar TJ (2017) ApJ 836:118 (paper II)

    Google Scholar 

  42. Notsu S, Nomura H, Ishimoto D, Walsh C, Honda M, Hirota T, Millar TJ (2016) ApJ 827:113 (paper I)

    Google Scholar 

  43. Notsu S, Nomura H, Ishimoto D et al (2015) In: Iono D et al (eds) ASP ASP Conference Series 499, Revolution in Astronomy with ALMA: The Third Year, ASP, San Francisco, CA, 289

    Google Scholar 

  44. Oka A, Nakamoto T, Ida S (2011) ApJ 738:141

    ADS  Google Scholar 

  45. Okuzumi S, Momose M, Sirono S-I, Kobayashi H, Tanaka H (2016) ApJ 821:82

    ADS  Google Scholar 

  46. Persson MV, Harsono D, Tobin JJ et al (2016) A&A 590:A33

    ADS  Google Scholar 

  47. Persson MV, Jørgensen JK, van Dishoeck EF (2012) A&A 541:A39

    ADS  Google Scholar 

  48. Persson MV, Jørgensen JK, van Dishoeck EF (2013) A&A 549:L3

    ADS  Google Scholar 

  49. Persson MV, Jørgensen JK, van Dishoeck EF et al (2014) A&A 563:A74

    ADS  Google Scholar 

  50. Phillips TG, Scoville NZ, Kwan J, Huggins PJ, Wannier PG (1978) ApJL 222:L59

    ADS  Google Scholar 

  51. Piso A-MA, Öberg KI, Birnstiel T, Murray-Clay RA (2015) ApJ 815:109

    ADS  Google Scholar 

  52. Piso A-MA, Pegues J, Öberg KI (2016) ApJ 833:203

    ADS  Google Scholar 

  53. Podio L, Kamp I, Codella C et al (2013) ApJL 766:L5

    ADS  Google Scholar 

  54. Pontoppidan KM, Salyk C, Blake GA et al (2010a) ApJ 720:887

    Google Scholar 

  55. Rothman LS, Gordon IE, Babikov Y et al (2013) JQSRT 130:4

    ADS  Google Scholar 

  56. Rybicki GB, Lightman AP (1986) Radiative Processes in Astrophysics. In: Rybicki GB, Lightman AP, Wiley-VCH, pp. 400. ISBN 0-471-82759-2

    Google Scholar 

  57. Salinas VN, Hogerheijde MR, Bergin EA et al (2016) A&A 591:A122

    ADS  Google Scholar 

  58. Salyk C, Pontoppidan KM, Blake GA, Najita JR, Carr JS (2011) ApJ 731:130

    ADS  Google Scholar 

  59. Schöier FL, van der Tak FFS, van Dishoeck EF, Black JH (2005) A&A 432:369

    ADS  Google Scholar 

  60. Schoonenberg D, Okuzumi S, Ormel CW (2017) A&A 605:L2

    ADS  Google Scholar 

  61. van der Tak FFS, Walmsley CM, Herpin F, Ceccarelli C (2006) A&A 447:1011

    ADS  Google Scholar 

  62. van Dishoeck EF, Bergin EA, Lis DC, Lunine JI (2014) In: Beuther H et al (ed) Protostars and Planets VI, Univ. Arizona Press, Tucson, AZ, p. 835

    Google Scholar 

  63. van Kempen TA, Doty SD, van Dishoeck EF, Hogerheijde MR, Jørgensen JK (2008) A&A 487:975

    ADS  Google Scholar 

  64. Walsh C, Millar TJ, Nomura H (2010) ApJ 722:1607

    ADS  Google Scholar 

  65. Walsh C, Millar TJ, Nomura H et al (2014) A&A 563:AA33

    Google Scholar 

  66. Walsh C, Nomura H, Millar TJ, Aikawa Y (2012) ApJ 747:114

    ADS  Google Scholar 

  67. Walsh C, Nomura H, van Dishoeck E (2015) A&A 582:A88

    ADS  Google Scholar 

  68. Weingartner JC, Draine BT (2001) ApJ 548:296ApJ

    Google Scholar 

  69. Wilson TL, Rood R (1994) ARA&A 32:191

    ADS  Google Scholar 

  70. Woitke P, Thi W-F, Kamp I, Hogerheijde MR (2009b) A&A 501:L5

    ADS  Google Scholar 

  71. Woodall J, Agúndez M, Markwick-Kemper AJ, Millar TJ (2007) A&A 466:1197

    ADS  Google Scholar 

  72. Zhang K, Blake GA, Bergin EA (2015) ApJL 806:L7

    ADS  Google Scholar 

  73. Zhang K, Pontoppidan KM, Salyk C, Blake GA (2013) ApJ 766:82

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shota Notsu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Notsu, S. (2020). Modeling Studies III. Sub-millimeter H\(_{2}\) \(^{16}\)O and H\(_{2}\) \(^{18}\)O Lines. In: Water Snowline in Protoplanetary Disks. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-15-7439-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7439-9_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7438-2

  • Online ISBN: 978-981-15-7439-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics