Skip to main content

Modeling Studies II. The Case of the Herbig Ae Star

  • Chapter
  • First Online:
Water Snowline in Protoplanetary Disks

Part of the book series: Springer Theses ((Springer Theses))

  • 148 Accesses

Abstract

Observationally locating the position of the H\(_{2}\)O snowline in protoplanetary disks is important to understand the processes of planetesimal and planet formation, and the origin of water on terrestrial planets including the Earth. In our studies, first we calculated chemical structures of the disk using the self-consistent physical models of a typical Herbig Ae disk. Next, on the basis of our calculations of disk chemical structures and water line profiles, we proposed how to identify the H\(_{2}\)O snowline positions directly by analyzing the Keplerian water line profiles which can be obtained by high-dispersion spectroscopic observations across a wide range of wavelengths (from mid-infrared to sub-millimeter wavelengths). We selected candidate water lines to locate the H\(_{2}\)O snowline based on specific criteria. We concluded that water lines with small Einstein A coefficients (A\(_{\mathrm {ul}} = 10^{-6}{\sim } 10^{-3}\) s\(^{-1}\)) and relatively high upper state energies (E\(_{\mathrm {up}}\) \(\sim \) 1000 K) trace the hot water vapor within the \({\mathrm {H_2O}}\) snowline, and can locate the H\(_{2}\)O snowline positions. In these candidate water lines, the contribution of the optically thick hot midplane within the H\(_{2}\)O snowline is large compared with that of the outer optically thin surface layer. This is because the line intensities from the optically thin region are proportional to the Einstein A coefficient. In addition, the contribution of the cold water reservoir outside the H\(_{2}\)O snowline is also small, since lines with high excitation energies are not emitted from the regions at a low temperature. The H\(_{2}\)O snowline positions of a Herbig Ae disk exists at a larger radius compared with that around cooler and less massive T Tauri stars. Moreover, the H\(_{2}\)O snowline position migrates closer to the star as the disk becomes older and mass accretion rate to the central star becomes smaller. Thus, observing the candidate water lines and locating the H\(_{2}\)O snowline positions, in Herbig Ae disks and younger T Tauri stars, is expected to be easier. We investigate the possibility of future observations (e.g., ALMA, SPICA/SMI-HRS) to locate the \({\mathrm {H_2O}}\) snowline position. Most contents of this chapter is based on our refereed paper that has been published (Notsu et al. 2017, ApJ, 836, 118).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(H=c_{s}/\Omega \propto M_{\mathrm {*}}^{-0.5}\) \(T_{g}^{0.5}\), where \(\Omega \) and \(c_{s}\) are the Keplerian angular velocity and the sound speed, respectively.

  2. 2.

    http://home.strw.leidenuniv.nl/~michiel/ratran/.

  3. 3.

    http://home.strw.leidenuniv.nl/~moldata/.

  4. 4.

    \(<\sigma v>\) is the collisional rates for the excitation of \({\mathrm {H_2O}}\) by H\(_{\mathrm {2}}\) and electrons for an adopted collisional temperature of 200 K from Faure and Josselin [23].

  5. 5.

    http://www.ir.isas.jaxa.jp/SPICA/SPICA_HP/research-en.html.

  6. 6.

    http://ircamera.as.arizona.edu/MIRI/index.htm.

References

  1. Aikawa Y, Nomura H (2006) ApJ 642:1152

    ADS  Google Scholar 

  2. Akimkin V, Zhukovska S, Wiebe D et al (2013) ApJ 766:8

    ADS  Google Scholar 

  3. ALMA Partnership, Brogan CL, Pérez LM et al (2015) ApJL 808:L3

    Google Scholar 

  4. Andrews SM, Wilner DJ, Zhu Z et al (2016) ApJL 820:L40

    ADS  Google Scholar 

  5. Antonellini S, Kamp I, Lahuis F et al (2016) A&A 585:A61

    ADS  Google Scholar 

  6. Antonellini S, Kamp I, Riviere-Marichalar P et al (2015) A&A 582:A105

    ADS  Google Scholar 

  7. Banzatti A, Meyer MR, Bruderer S et al (2012) ApJ 745:90

    ADS  Google Scholar 

  8. Banzatti A, Pinilla P, Ricci L et al (2015) ApJL 815:L15

    ADS  Google Scholar 

  9. Banzatti A, Pontoppidan KM, Salyk C et al (2017) ApJ 834:152

    ADS  Google Scholar 

  10. Benisty M, Tatulli E, Ménard F, Swain MR (2010) A&A 511:A75

    ADS  Google Scholar 

  11. Bethell TJ, Bergin EA (2011) ApJ 739:78

    ADS  Google Scholar 

  12. Blevins SM, Pontoppidan KM, Banzatti A et al (2016) ApJ 818:22

    ADS  Google Scholar 

  13. Cieza LA, Casassus S, Tobin J et al (2016) Nature 535:258

    ADS  Google Scholar 

  14. Davis SS (2005) ApJ 620:994

    ADS  Google Scholar 

  15. Dent WRF, Thi WF, Kamp I et al (2013) PASP 125:477

    ADS  Google Scholar 

  16. Dominik C, Dullemond CP, Waters LBFM, Walch S (2003) A&A 398:607

    ADS  Google Scholar 

  17. Du F, Bergin EA (2014) ApJ 792:2

    ADS  Google Scholar 

  18. Dullemond CP, Dominik C (2004) A&A 417:159

    ADS  Google Scholar 

  19. Dutrey A, Semenov D, Chapillon E et al (2014) Protostars and planets VI. University of Arizona Press, p 317

    Google Scholar 

  20. Espaillat C, Calvet N, D’Alessio P et al (2007) ApJL 670:L135

    ADS  Google Scholar 

  21. Eistrup C, Walsh C, van Dishoeck EF (2016) A&A 595:A83

    ADS  Google Scholar 

  22. Eistrup C, Walsh C, van Dishoeck EF (2018) A&A 613:A14

    ADS  Google Scholar 

  23. Faure A, Josselin E (2008) A&A 492:257

    ADS  Google Scholar 

  24. Fedele D, Bruderer S, van Dishoeck EF et al (2012) A&A 544:LL9

    Google Scholar 

  25. Fedele D, Bruderer S, van Dishoeck EF et al (2013) A&A 559:AA77

    Google Scholar 

  26. Fedele D, Pascucci I, Brittain S et al (2011) ApJ 732:106

    ADS  Google Scholar 

  27. Fujiwara H, Honda M, Kataza H et al (2006) ApJL 644:L133

    ADS  Google Scholar 

  28. Fukagawa M, Tamura M, Itoh Y et al (2006) ApJL 636:L153

    ADS  Google Scholar 

  29. Fukagawa M, Tsukagoshi T, Momose M et al (2013) PASJ 65:L14

    ADS  Google Scholar 

  30. Furuya K, Aikawa Y, Nomura H, Hersant F, Wakelam V (2013) ApJ 779:11

    ADS  Google Scholar 

  31. Garaud P, Lin DNC (2007) ApJ 654:606

    ADS  Google Scholar 

  32. Graedel TE, Langer WD, Frerking MA (1982) ApJS 48:321

    ADS  Google Scholar 

  33. Hama T, Kouchi A, Watanabe N (2016) Science 351:65

    ADS  Google Scholar 

  34. Hama T, Kouchi A, Watanabe N (2018) ApJL 857:L13

    ADS  Google Scholar 

  35. Harsono D, Bruderer S, van Dishoeck EF (2015) A&A 582:A41

    ADS  Google Scholar 

  36. Hasegawa TI, Herbst E, Leung CM (1992) ApJS 82:167

    ADS  Google Scholar 

  37. Haworth TJ, Ilee JD, Forgan DH et al (2016) PASA 33:e053

    ADS  Google Scholar 

  38. Heinzeller D, Nomura H, Walsh C, Millar TJ (2011) ApJ 731:115

    ADS  Google Scholar 

  39. Henning T, Semenov D (2013) Chem Rev 113:9016

    Google Scholar 

  40. Hirota T, Kim MK, Kurono Y, Honma M (2014) ApJL 782:L28

    ADS  Google Scholar 

  41. Hogerheijde MR, Bergin EA, Brinch C et al (2011) Science 334:338

    ADS  Google Scholar 

  42. Hogerheijde MR, van der Tak FFS (2000) A&A 362:697

    ADS  Google Scholar 

  43. Honda M, Maaskant K, Okamoto YK et al (2012) ApJ 752:143

    ADS  Google Scholar 

  44. Honda M, Maaskant K, Okamoto YK et al (2015) ApJ 804:143

    ADS  Google Scholar 

  45. Isella A, Guidi G, Testi L et al (2016) Phys Rev Lett 117:251101

    ADS  Google Scholar 

  46. Isella A, Huang J, Andrews SM et al (2019) ApJL 869:L49

    ADS  Google Scholar 

  47. Kamp I, Thi W-F, Meeus G et al (2013) A&A 559:A24

    ADS  Google Scholar 

  48. Krijt S, Ciesla FJ, Bergin EA (2016) ApJ 833:285

    ADS  Google Scholar 

  49. Kristensen LE, Brown JM, Wilner D, Salyk C (2016) ApJL 822:L20

    ADS  Google Scholar 

  50. Lahuis F, van Dishoeck EF, Blake GA et al (2007) ApJ 665:492

    ADS  Google Scholar 

  51. Maaskant KM, Honda M, Waters LBFM et al (2013) A&A 555:A64

    ADS  Google Scholar 

  52. Mandell AM, Bast J, van Dishoeck EF et al (2012) ApJ 747:92

    ADS  Google Scholar 

  53. Meeus G, Montesinos B, Mendigutía I et al (2012) A&A 544:AA78

    Google Scholar 

  54. Meeus G, Waters LBFM, Bouwman J et al (2001) A&A 365:476

    ADS  Google Scholar 

  55. Meijerink R, Poelman DR, Spaans M, Tielens AGGM, Glassgold AE (2008) ApJL 689:L57

    ADS  Google Scholar 

  56. Meijerink R, Pontoppidan KM, Blake GA, Poelman DR, Dullemond CP (2009) ApJ 704:1471

    ADS  Google Scholar 

  57. Menu J, van Boekel R, Henning T et al (2015) A&A 581:A107

    ADS  Google Scholar 

  58. Min M, Dullemond CP, Kama M, Dominik C (2011) Icarus 212:416

    ADS  Google Scholar 

  59. Mulders GD, Ciesla FJ, Min M, Pascucci I (2015) ApJ 807:9

    ADS  Google Scholar 

  60. Nomura H, Millar TJ (2005) A&A 438:923

    ADS  Google Scholar 

  61. Nomura H, Aikawa Y, Tsujimoto M, Nakagawa Y, Millar TJ (2007) ApJ 661:334

    ADS  Google Scholar 

  62. Notsu S, Nomura H, Walsh C et al (2019) ApJ 875:96 (paper IV)

    Google Scholar 

  63. Notsu S, Nomura H, Walsh C et al (2018) ApJ 855:62 (paper III)

    Google Scholar 

  64. Notsu S, Nomura H, Ishimoto D, Walsh C, Honda M, Hirota T, Millar TJ (2017) ApJ 836:118 (paper II)

    Google Scholar 

  65. Notsu S, Nomura H, Ishimoto D, Walsh C, Honda M, Hirota T, Millar TJ (2016) ApJ 827:113 (paper I)

    Google Scholar 

  66. Notsu S, Nomura H, Ishimoto D et al (2015) Revolution in astronomy with ALMA: the third year. ASP Conf Ser 499:289

    ADS  Google Scholar 

  67. Oka A, Nakamoto T, Ida S (2011) ApJ 738:141

    ADS  Google Scholar 

  68. Okuzumi S, Momose M, Sirono S-I, Kobayashi H, Tanaka H (2016) ApJ 821:82

    ADS  Google Scholar 

  69. Packham C, Honda M, Richter M et al (2012) Proc SPIE 8446:84467G

    Google Scholar 

  70. Panić O, Ratzka T, Mulders GD et al (2014) A&A 562:A101

    ADS  Google Scholar 

  71. Piso A-MA, Öberg KI, Birnstiel T, Murray-Clay RA (2015) ApJ 815:109

    ADS  Google Scholar 

  72. Podio L, Kamp I, Codella C et al (2013) ApJL 766:L5

    ADS  Google Scholar 

  73. Pontoppidan KM, Salyk C, Blake GA et al (2010a) ApJ 720:887

    ADS  Google Scholar 

  74. Pontoppidan KM, Salyk C, Blake GA, K&aumlufl HU (2010) ApJL 722:L173

    Google Scholar 

  75. Rybicki GB, Lightman AP (1986) Radiative processes in astrophysics, by GB Rybicki, AP Lightman. Wiley-VCH, June 1986, p 400. ISBN 0-471-82759-2

    Google Scholar 

  76. Salinas VN, Hogerheijde MR, Bergin EA et al (2016) A&A 591:A122

    ADS  Google Scholar 

  77. Salyk C, Pontoppidan KM, Blake GA et al (2008) ApJL 676:L49

    ADS  Google Scholar 

  78. Salyk C, Pontoppidan KM, Blake GA, Najita JR, Carr JS (2011) ApJ 731:130

    ADS  Google Scholar 

  79. Sato T, Okuzumi S, Ida S (2016) A&A 589:A15

    ADS  Google Scholar 

  80. Schöier FL, van der Tak FFS, van Dishoeck EF, Black JH (2005) A&A 432:369

    ADS  Google Scholar 

  81. Strom KM, Strom SE, Edwards S, Cabrit S, Skrutskie MF (1989) AJ 97:1451

    ADS  Google Scholar 

  82. Tilling I, Woitke P, Meeus G et al (2012) A&A 538:A20

    ADS  Google Scholar 

  83. Tsukagoshi T, Nomura H, Muto T et al (2016) ApJL 829:L35

    ADS  Google Scholar 

  84. van Dishoeck EF, Bergin EA, Lis DC, Lunine JI (2014) Protostars and planets VI. University of Arizona Press, p 835

    Google Scholar 

  85. Vasyunin AI, Wiebe DS, Birnstiel T et al (2011) ApJ 727:76

    ADS  Google Scholar 

  86. Walsh C, Juhász A, Pinilla P et al (2014) ApJL 791:L6

    Google Scholar 

  87. Walsh C, Millar TJ, Nomura H (2010) ApJ 722:1607

    ADS  Google Scholar 

  88. Walsh C, Millar TJ, Nomura H et al (2014) A&A 563:AA33

    Google Scholar 

  89. Walsh C, Nomura H, Millar TJ, Aikawa Y (2012) ApJ 747:114

    ADS  Google Scholar 

  90. Walsh C, Nomura H, van Dishoeck E (2015) A&A 582:A88

    ADS  Google Scholar 

  91. Woitke P, Thi W-F, Kamp I, Hogerheijde MR (2009) A&A 501:L5

    Google Scholar 

  92. Woodall J, Agúndez M, Markwick-Kemper AJ, Millar TJ (2007) A&A 466:1197

    ADS  Google Scholar 

  93. Zhang K, Bergin EA, Blake GA et al (2016) ApJL 818:L16

    ADS  Google Scholar 

  94. Zhang K, Blake GA, Bergin EA (2015) ApJL 806:L7

    ADS  Google Scholar 

  95. Zhang K, Pontoppidan KM, Salyk C, Blake GA (2013) ApJ 766:82

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shota Notsu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Notsu, S. (2020). Modeling Studies II. The Case of the Herbig Ae Star. In: Water Snowline in Protoplanetary Disks. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-15-7439-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7439-9_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7438-2

  • Online ISBN: 978-981-15-7439-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics