Skip to main content

Modeling Studies I. The Case of the T Tauri Star

  • Chapter
  • First Online:
Water Snowline in Protoplanetary Disks

Part of the book series: Springer Theses ((Springer Theses))

  • 149 Accesses

Abstract

We found candidate water lines to locate the \(\mathrm {H_2O}\) snowline position through future high-dispersion spectroscopic observations. As a first step, we calculated chemical structures of the disk using the self-consistent physical models of a typical T Tauri disk. We confirmed that the water gas abundance is high not only in the hot disk midplane within the \(\mathrm {H_2O}\) snowline, but also in the outer hot surface and photodesorption region. Next, we calculated the profiles of water lines, and find the lines which are best to locate the position of the \(\mathrm {H_2O}\) snowline. The lines we identified are those with high upper state energies and small Einstein A coefficients. The wavelengths of the candidate water lines range from mid-infrared to sub-millimeter, and they overlap with the wavelength coverages of ALMA and future mid-infrared high dispersion spectrographs (e.g., TMT/MICHI, SPICA). Most contents of this chapter is based on our refereed paper that has been published (Notsu et al. 2016, ApJ, 827, 113).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(n_{\mathrm {H}}\) is the total gas atomic hydrogen number density.

  2. 2.

    http://home.strw.leidenuniv.nl/~michiel/ratran/.

  3. 3.

    http://home.strw.leidenuniv.nl/~moldata/.

  4. 4.

    http://www.ir.isas.jaxa.jp/SPICA/SPICA_HP/research-en.html.

References

  1. Adams FC, Shu FH (1986) ApJ 308:836

    ADS  Google Scholar 

  2. Aikawa Y, Miyama SM, Nakano T, Umebayashi T (1996) ApJ 467:684

    ADS  Google Scholar 

  3. Aikawa Y, Nomura H (2006) ApJ 642:1152

    ADS  Google Scholar 

  4. Akimkin V, Zhukovska S, Wiebe D et al (2013) ApJ 766:8

    ADS  Google Scholar 

  5. ALMA Partnership, Brogan CL, Pérez LM et al (2015) ApJL 808:L3

    Google Scholar 

  6. Anders E, Grevesse N (1989) GeoCoA 53:197

    ADS  Google Scholar 

  7. Antonellini S, Kamp I, Riviere-Marichalar P et al (2015) A&A 582:A105

    ADS  Google Scholar 

  8. Banzatti A, Meyer MR, Bruderer S et al (2012) ApJ 745:90

    ADS  Google Scholar 

  9. Banzatti A, Pinilla P, Ricci L et al (2015) ApJL 815:L1

    Google Scholar 

  10. Barber RJ, Tennyson J, Harris GJ, Tolchenov RN (2006) MNRAS 368:1087

    ADS  Google Scholar 

  11. Brown WA, Bolina AS (2007) MNRAS 374:1006

    ADS  Google Scholar 

  12. Carr JS, Najita JR (2011) ApJ 733:102

    ADS  Google Scholar 

  13. Davis SS (2005) ApJ 620:994

    ADS  Google Scholar 

  14. Dent WRF, Thi WF, Kamp I et al (2013) PASP 125:477

    ADS  Google Scholar 

  15. Dominik C, Ceccarelli C, Hollenbach D, Kaufman M (2005) ApJL 635:L85

    ADS  Google Scholar 

  16. Drozdovskaya MN, Walsh C, Visser R, Harsono D, van Dishoeck EF (2014) MNRAS 445:913

    ADS  Google Scholar 

  17. Du F, Bergin EA (2014) ApJ 792:2

    ADS  Google Scholar 

  18. Du F, Bergin EA, Hogerheijde MR (2015) ApJL 807:L32

    ADS  Google Scholar 

  19. Dutrey A, Semenov D, Chapillon E et al (2014) Protostars and planets VI, p 317

    Google Scholar 

  20. Edridge JL (2010) PhD Thesis

    Google Scholar 

  21. Faure A, Josselin E (2008) A&A 492:257

    ADS  Google Scholar 

  22. Fedele D, Bruderer S, van Dishoeck EF et al (2012) A&A 544:LL9

    Google Scholar 

  23. Fedele D, Bruderer S, van Dishoeck EF et al (2013) A&A 559:AA77

    Google Scholar 

  24. Furuya K, Aikawa Y, Nomura H, Hersant F, Wakelam V (2013) ApJ 779:11

    ADS  Google Scholar 

  25. Furuya K, Aikawa Y (2014) ApJ 790:97

    ADS  Google Scholar 

  26. Garaud P, Lin DNC (2007) ApJ 654:606

    ADS  Google Scholar 

  27. Graedel TE, Langer WD, Frerking MA (1982) ApJS 48:321

    ADS  Google Scholar 

  28. Glassgold AE, Meijerink R, Najita JR (2009) ApJ 701:142

    ADS  Google Scholar 

  29. Hama T, Kouchi A, Watanabe N (2016) Science 351:65

    ADS  Google Scholar 

  30. Harsono D, Bruderer S, van Dishoeck EF (2015) A&A 582:A41

    ADS  Google Scholar 

  31. Hasegawa TI, Herbst E, Leung CM (1992) ApJS 82:167

    ADS  Google Scholar 

  32. Hasegawa TI, Herbst E (1993) MNRAS 261:83

    ADS  Google Scholar 

  33. Heinzeller D, Nomura H, Walsh C, Millar TJ (2011) ApJ 731:115

    ADS  Google Scholar 

  34. Henning T, Semenov D (2013) Chem Rev 113:9016

    Google Scholar 

  35. Hogerheijde MR, Bergin EA, Brinch C et al (2011) Science 334:338

    ADS  Google Scholar 

  36. Hogerheijde MR, van der Tak FFS (2000) A&A 362:697

    ADS  Google Scholar 

  37. Ishimoto D, Nomura H, Heinzeller D et al (2013) New trends in radio astronomy in the ALMA era: the 30th anniversary of Nobeyama radio observatory, vol 476, p 393

    Google Scholar 

  38. Kamp I, Thi W-F, Meeus G et al (2013) A&A 559:A24

    ADS  Google Scholar 

  39. Kastner JH, Huenemoerder DP, Schulz NS, Canizares CR, Weintraub DA (2002) ApJ 567:434

    ADS  Google Scholar 

  40. Kenyon SJ, Hartmann L (1995) ApJS 101:117

    ADS  Google Scholar 

  41. Leger A, Jura M, Omont A (1985) A&A 144:147

    ADS  Google Scholar 

  42. Li A, Draine BT (2001) ApJ 554:778

    ADS  Google Scholar 

  43. Liedahl DA, Osterheld AL, Goldstein WH (1995) ApJL 438:L115

    ADS  Google Scholar 

  44. Masuda K, Takahashi J, Mukai T (1998) A&A 330:773

    ADS  Google Scholar 

  45. Mathis JS, Rumpl W, Nordsieck KH (1977) ApJ 217:425

    ADS  Google Scholar 

  46. McElroy D, Walsh C, Markwick AJ et al (2013) A&A 550:A36

    ADS  Google Scholar 

  47. Meeus G, Montesinos B, Mendigutía I et al (2012) A&A 544:AA78

    Google Scholar 

  48. Meijerink R, Aresu G, Kamp I et al (2012) A&A 547:A68

    ADS  Google Scholar 

  49. Meijerink R, Poelman DR, Spaans M, Tielens AGGM, Glassgold AE (2008) ApJL 689:L57

    ADS  Google Scholar 

  50. Meijerink R, Pontoppidan KM, Blake GA, Poelman DR, Dullemond CP (2009) ApJ 704:1471

    ADS  Google Scholar 

  51. Min M, Dullemond CP, Kama M, Dominik C (2011) Icarus 212:416

    ADS  Google Scholar 

  52. Mulders GD, Ciesla FJ, Min M, Pascucci I (2015) ApJ 807:9

    ADS  Google Scholar 

  53. Mumma MJ, Charnley SB (2011) ARA&A 49:471

    ADS  Google Scholar 

  54. Mumma MJ, Weaver HA, Larson HP (1987) A&A 187:419

    ADS  Google Scholar 

  55. Najita J, Bergin EA, Ullom JN (2001) ApJ 561:880

    ADS  Google Scholar 

  56. Nomura H, Millar TJ (2005) A&A 438:923

    ADS  Google Scholar 

  57. Nomura H, Aikawa Y, Tsujimoto M, Nakagawa Y, Millar TJ (2007) ApJ 661:334

    ADS  Google Scholar 

  58. Notsu S, Nomura H, Walsh C et al (2019) ApJ 875:96 (paper IV)

    Google Scholar 

  59. Notsu S, Nomura H, Walsh C et al (2018) ApJ 855:62 (paper III)

    Google Scholar 

  60. Notsu S, Nomura H, Ishimoto D, Walsh C, Honda M, Hirota T, Millar TJ (2017) ApJ 836:118 (paper II)

    Google Scholar 

  61. Notsu S, Nomura H, Ishimoto D, Walsh C, Honda M, Hirota T, Millar TJ (2016) ApJ 827:113 (paper I)

    Google Scholar 

  62. Öberg KI, Fuchs GW, Awad Z et al (2007) ApJL 662:L23

    ADS  Google Scholar 

  63. Öberg KI, Garrod RT, van Dishoeck EF, Linnartz H (2009) A&A 504:891

    ADS  Google Scholar 

  64. Öberg KI, Linnartz H, Visser R, van Dishoeck EF (2009) ApJ 693:1209

    ADS  Google Scholar 

  65. Öberg KI, van Broekhuizen F, Fraser HJ et al (2005) ApJL 621:L33

    ADS  Google Scholar 

  66. Öberg KI, van Dishoeck EF, Linnartz H (2009) A&A 496:281

    ADS  Google Scholar 

  67. Oka A, Nakamoto T, Ida S (2011) ApJ 738:141

    ADS  Google Scholar 

  68. Okuzumi S, Momose M, Sirono S-I, Kobayashi H, Tanaka H (2016) ApJ 821:82

    ADS  Google Scholar 

  69. Packham C, Honda M, Richter M et al (2012) Proc SPIE 8446:84467G

    Google Scholar 

  70. Piso A-MA, Öberg KI, Birnstiel T, Murray-Clay RA (2015) ApJ 815:109

    ADS  Google Scholar 

  71. Pontoppidan KM, Salyk C, Blake GA et al (2010a) ApJ 720:887

    ADS  Google Scholar 

  72. Riviere-Marichalar P, Ménard F, Thi WF et al (2012) A&A 538:LL3

    Google Scholar 

  73. Ros K, Johansen A (2013) A&A 552:A137

    ADS  Google Scholar 

  74. Rybicki GB, Lightman AP (1986) Radiative processes in astrophysics, by GB Rybicki, AP Lightman. Wiley-VCH, June 1986, pp 400. ISBN 0-471-82759-2

    Google Scholar 

  75. Salyk C, Pontoppidan KM, Blake GA, Najita JR, Carr JS (2011) ApJ 731:130

    ADS  Google Scholar 

  76. Sandford SA, Allamandola LJ (1993) ApJ 417:815

    ADS  Google Scholar 

  77. Sato T, Okuzumi S, Ida S (2016) A&A 589:A15

    ADS  Google Scholar 

  78. Schöier FL, van der Tak FFS, van Dishoeck EF, Black JH (2005) A&A 432:369

    ADS  Google Scholar 

  79. Semenov D, Wiebe D (2011) ApJS 196:25

    ADS  Google Scholar 

  80. Shakura NI, Sunyaev RA (1973) A&A 24:337

    ADS  Google Scholar 

  81. Tennyson J, Zobov NF, Williamson R, Polyansky OL, Bernath PF (2001) J Phys Chem Ref Data 30:735

    Google Scholar 

  82. van Dishoeck EF, Bergin EA, Lis DC, Lunine JI (2014) Protostars and planets VI, p 835

    Google Scholar 

  83. van Dishoeck EF, Herbst E, Neufeld DA (2013) Chem Rev 113:9043

    Google Scholar 

  84. van Dishoeck EF, Jonkheid B, van Hemert MC (2006) Faraday Discuss 133:231

    ADS  Google Scholar 

  85. Vasyunin AI, Wiebe DS, Birnstiel T et al (2011) ApJ 727:76

    ADS  Google Scholar 

  86. Veeraghattam VK, Manrodt K, Lewis SP, Stancil PC (2014) ApJ 790:4

    ADS  Google Scholar 

  87. Walsh C, Harada N, Herbst E, Millar TJ (2009) ApJ 700:752

    ADS  Google Scholar 

  88. Walsh C, Millar TJ, Nomura H (2010) ApJ 722:1607

    ADS  Google Scholar 

  89. Walsh C, Millar TJ, Nomura H et al (2014) A&A 563:AA33

    Google Scholar 

  90. Walsh C, Nomura H, Millar TJ, Aikawa Y (2012) ApJ 747:114

    ADS  Google Scholar 

  91. Walsh C, Nomura H, van Dishoeck E (2015) A&A 582:A88

    ADS  Google Scholar 

  92. Weingartner JC, Draine BT (2001) ApJ 548:296

    ADS  Google Scholar 

  93. Westley MS, Baragiola RA, Johnson RE, Baratta GA (1995) Nature 373:405

    ADS  Google Scholar 

  94. Willacy K (2007) ApJ 660:441

    ADS  Google Scholar 

  95. Willacy K, Langer WD (2000) ApJ 544:903

    ADS  Google Scholar 

  96. Woitke P, Kamp I, Thi W-F (2009) A&A 501:383

    Google Scholar 

  97. Woitke P, Thi W-F, Kamp I, Hogerheijde MR (2009) A&A 501:L5

    Google Scholar 

  98. Woodall J, Agúndez M, Markwick-Kemper AJ, Millar TJ (2007) A&A 466:1197

    ADS  Google Scholar 

  99. Yamamoto T, Nakagawa N, Fukui Y (1983) A&A 122:171

    ADS  Google Scholar 

  100. Zhang K, Blake GA, Bergin EA (2015) ApJL 806:L7

    ADS  Google Scholar 

  101. Zhang K, Pontoppidan KM, Salyk C, Blake GA (2013) ApJ 766:82

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shota Notsu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Notsu, S. (2020). Modeling Studies I. The Case of the T Tauri Star. In: Water Snowline in Protoplanetary Disks. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-15-7439-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7439-9_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7438-2

  • Online ISBN: 978-981-15-7439-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics