Skip to main content

Introduction

  • Chapter
  • First Online:
Water Snowline in Protoplanetary Disks

Part of the book series: Springer Theses ((Springer Theses))

  • 149 Accesses

Abstract

This chapter is the introduction section of our thesis, “Water snowline in protoplanetary disks”. Observationally locating the position of the H\(_{2}\)O snowline in protoplanetary disks is important to understand the planetesimal and planet formation processes, and the water trail to rocky planets. The line profiles from disks are usually affected by doppler shift due to Keplerian rotation. Thus, the line profiles are sensitive to the radial distribution of the emitting regions of lines. However, water lines which have been obtained by previous infrared spectroscopic observations mainly traced the disk surface and the cold water reservoir outside the H\(_{2}\)O snowline. Thus, they are not good direct tracer of the H\(_{2}\)O snowline. In this thesis, we proposed a method to locate the H\(_{2}\)O snowline position more directly by analyzing the H\(_{2}\)O line profiles which can be obtained by high dispersion spectroscopic observations across a wide wavelength rage (from mid-infrared to sub-millimeter, e.g., SPICA, ALMA) and selected based on specific criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    DSHARP is one of the initial Large Programs conducted with ALMA (2016.1.00484.L). For more details, see https://almascience.eso.org/almadata/lp/DSHARP/.

References

  1. Akiyama E, Hasegawa Y, Hayashi M, Iguchi S (2016) ApJ 818:158

    ADS  Google Scholar 

  2. Akiyama E, Muto T, Kusakabe N et al (2015) ApJL 802:L17

    ADS  Google Scholar 

  3. ALMA Partnership, Brogan CL, Pérez LM et al (2015) ApJL 808:L3

    Google Scholar 

  4. Andrews SM, Huang J, Pérez LM et al (2019) ApJL 869:L41

    ADS  Google Scholar 

  5. Andrews SM, Wilner DJ, Zhu Z et al (2016) ApJL 820:L40

    ADS  Google Scholar 

  6. Antonellini S, Bremer J, Kamp I et al (2017) A&A 597:A72

    ADS  Google Scholar 

  7. Armitage PJ (2011) ARA&A 49:195

    ADS  Google Scholar 

  8. Banzatti A, Pinilla P, Ricci L et al (2015) ApJL 815:L1

    Google Scholar 

  9. Banzatti A, Pontoppidan KM, Salyk C et al (2017) ApJ 834:152

    ADS  Google Scholar 

  10. Benisty M, Juhasz A, Boccaletti A et al (2015) A&A 578:L6

    ADS  Google Scholar 

  11. Blevins SM, Pontoppidan KM, Banzatti A et al (2016) ApJ 818:22

    ADS  Google Scholar 

  12. Carr JS, Najita JR (2008) Science 319:1504

    ADS  Google Scholar 

  13. Carr JS, Najita JR (2011) ApJ 733:102

    ADS  Google Scholar 

  14. Caselli P, Ceccarelli C (2012) A&A Rv 20:56

    ADS  Google Scholar 

  15. Cieza LA, Casassus S, Tobin J et al (2016) Nature 535:258

    ADS  Google Scholar 

  16. Davis SS (2005) ApJ 620:994

    ADS  Google Scholar 

  17. Dent WRF, Pinte C, Cortes PC et al (2019) MNRAS 482:L29

    ADS  Google Scholar 

  18. Dent WRF, Thi WF, Kamp I et al (2013) PASP 125:477

    ADS  Google Scholar 

  19. Du F, Bergin EA (2014) ApJ 792:2

    ADS  Google Scholar 

  20. Du F, Bergin EA, Hogerheijde M et al (2017) ApJ 842:98

    ADS  Google Scholar 

  21. Fedele D, Bruderer S, van Dishoeck EF et al (2012) A&A 544:LL9

    Google Scholar 

  22. Fedele D, Bruderer S, van Dishoeck EF et al (2013) A&A 559:AA77

    Google Scholar 

  23. Fedele D, Pascucci I, Brittain S et al (2011) ApJ 732:106

    ADS  Google Scholar 

  24. Fukagawa M, Tsukagoshi T, Momose M et al (2013) PASJ 65:L14

    ADS  Google Scholar 

  25. Garaud P, Lin DNC (2007) ApJ 654:606

    ADS  Google Scholar 

  26. Goto M, Usuda T, Dullemond CP et al (2006) ApJ 652:758

    ADS  Google Scholar 

  27. Harsono D, Bruderer S, van Dishoeck EF (2015) A&A 582:A41

    ADS  Google Scholar 

  28. Hayashi C (1981) Prog Theoret Phys Suppl 70:35

    ADS  Google Scholar 

  29. Hayashi C, Nakazawa K, Nakagawa Y (1985) In: Black DC, Matthews MS (eds) Protostars and planets II. University of Arizona Press, Tucson, AZ, p 1100

    Google Scholar 

  30. Henning T, Semenov D (2013) Chem Rev 113:9016

    Google Scholar 

  31. Hirota T, Kim MK, Kurono Y, Honma M (2014) ApJL 782:L28

    ADS  Google Scholar 

  32. Hogerheijde MR, Bergin EA, Brinch C et al (2011) Science 334:338

    ADS  Google Scholar 

  33. Honda M, Inoue AK, Fukagawa M et al (2009) ApJL 690:L110

    ADS  Google Scholar 

  34. Honda M, Kudo T, Takatsuki S et al (2016) ApJ 821:2

    ADS  Google Scholar 

  35. Huang J, Andrews SM, Dullemond CP et al (2018) ApJL 869:L42

    ADS  Google Scholar 

  36. Huang J, Andrews SM, Pérez LM et al (2018) ApJL 869:L43

    ADS  Google Scholar 

  37. Ida S, Guillot T (2016) A&A 596:L3

    ADS  Google Scholar 

  38. Inoue AK, Honda M, Nakamoto T, Oka A (2008) PASJ 60:557

    ADS  Google Scholar 

  39. Isella A, Guidi G, Testi L et al (2016) Phys Rev Lett 117:251101

    ADS  Google Scholar 

  40. Isella A, Huang J, Andrews SM et al (2019) ApJL 869:L49

    ADS  Google Scholar 

  41. Kamp I, Thi W-F, Meeus G et al (2013) A&A 559:A24

    ADS  Google Scholar 

  42. Kanagawa KD, Muto T, Tanaka H et al (2015) ApJL 806:L15

    Google Scholar 

  43. Kanagawa KD, Tanaka H, Muto T, Tanigawa T, Takeuchi T (2015) MNRAS 448:994

    Google Scholar 

  44. Mandell AM, Bast J, van Dishoeck EF et al (2012) ApJ 747:92

    ADS  Google Scholar 

  45. Martin RG, Livio M (2012) MNRAS 425:L6

    ADS  Google Scholar 

  46. Martin RG, Livio M (2013) MNRAS 434:633

    ADS  Google Scholar 

  47. Mathews GS, Klaassen PD, Juhász A et al (2013) A&A 557:A132

    ADS  Google Scholar 

  48. Matsumura S, Brasser R, Ida S (2016) ApJ 818:15

    ADS  Google Scholar 

  49. McClure MK, Espaillat C, Calvet N et al (2015) ApJ 799:162

    ADS  Google Scholar 

  50. McClure MK, Manoj P, Calvet N et al (2012) ApJL 759:LL10

    Google Scholar 

  51. Meeus G, Montesinos B, Mendigutía I et al (2012) A&A 544:AA78

    Google Scholar 

  52. Min M, Dullemond CP, Kama M, Dominik C (2011) Icarus 212:416

    ADS  Google Scholar 

  53. Min M, Bouwman J, Dominik C et al (2016) A&A 593:A11

    ADS  Google Scholar 

  54. Morbidelli A, Bitsch B, Crida A et al (2016) Icarus 267:368

    ADS  Google Scholar 

  55. Morbidelli A, Chambers J, Lunine JI et al (2000) Meteorit Planet Sci 35:1309

    ADS  Google Scholar 

  56. Morbidelli A, Karato S-I, Ikoma M et al (2018) SSRv 214:110

    ADS  Google Scholar 

  57. Morbidelli A, Lunine JI, O’Brien DP, Raymond SN, Walsh KJ (2012) Annu Rev Earth Planet Sci 40:251

    ADS  Google Scholar 

  58. Mulders GD, Ciesla FJ, Min M, Pascucci I (2015) ApJ 807:9

    ADS  Google Scholar 

  59. Muto T, Grady CA, Hashimoto J et al (2012) ApJL 748:LL22

    Google Scholar 

  60. Muto T, Tsukagoshi T, Momose M et al (2015) PASJ 67:122

    ADS  Google Scholar 

  61. Najita JR, Carr JS, Pontoppidan KM et al (2013) ApJ 766:134

    ADS  Google Scholar 

  62. Nomura H, Tsukagoshi T, Kawabe R et al (2016) ApJL 819:L7

    ADS  Google Scholar 

  63. Notsu S, Nomura H, Walsh C et al (2019) ApJ 875:96 (paper IV)

    Google Scholar 

  64. Notsu S, Nomura H, Walsh C et al (2018) ApJ 855:62 (paper III)

    Google Scholar 

  65. Notsu S, Nomura H, Ishimoto D, Walsh C, Honda M, Hirota T, Millar TJ (2017) ApJ 836:118 (paper II)

    Google Scholar 

  66. Notsu S, Nomura H, Ishimoto D, Walsh C, Honda M, Hirota T, Millar TJ (2016) ApJ 827:113 (paper I)

    Google Scholar 

  67. Öberg KI, Furuya K, Loomis R et al (2015) ApJ 810:112

    ADS  Google Scholar 

  68. Öberg KI, Murray-Clay R, Bergin EA (2011) ApJL 743:L16

    ADS  Google Scholar 

  69. Oka A, Nakamoto T, Ida S (2011) ApJ 738:141

    ADS  Google Scholar 

  70. Okuzumi S, Momose M, Sirono S-I, Kobayashi H, Tanaka H (2016) ApJ 821:82

    ADS  Google Scholar 

  71. Okuzumi S, Tanaka H, Kobayashi H, Wada K (2012) ApJ 752:106

    ADS  Google Scholar 

  72. Persson MV, Jørgensen JK, van Dishoeck EF (2013) A&A 549:L3

    ADS  Google Scholar 

  73. Pinilla P, Pohl A, Stammler SM, Birnstiel T (2017) ApJ 845:68

    ADS  Google Scholar 

  74. Pinte C, Dent WRF, Ménard F et al (2016) ApJ 816:25

    ADS  Google Scholar 

  75. Piso A-MA, Öberg KI, Birnstiel T, Murray-Clay RA (2015) ApJ 815:109

    ADS  Google Scholar 

  76. Piso A-MA, Pegues J, Öberg KI (2016) ApJ 833:203

    ADS  Google Scholar 

  77. Podio L, Kamp I, Codella C et al (2013) ApJL 766:L5

    ADS  Google Scholar 

  78. Pontoppidan KM, Blake GA, Smette A (2011) ApJ 733:84

    ADS  Google Scholar 

  79. Pontoppidan KM, Blake GA, van Dishoeck EF et al (2008) ApJ 684:1323

    ADS  Google Scholar 

  80. Pontoppidan KM, Dullemond CP, van Dishoeck EF et al (2005) ApJ 622:463

    ADS  Google Scholar 

  81. Pontoppidan KM, Salyk C, Bergin EA et al (2014) Protostars and planets VI, p 363

    Google Scholar 

  82. Pontoppidan KM, Salyk C, Blake GA et al (2010) ApJ 720:887

    Google Scholar 

  83. Pontoppidan KM, Salyk C, Blake GA, K&aumlufl HU (2010) ApJL 722:L173

    Google Scholar 

  84. Qi C, Öberg KI, Andrews SM et al (2015) ApJ 813:128

    ADS  Google Scholar 

  85. Qi C, Öberg KI, Espaillat CC et al (2019) ApJ 882:160

    ADS  Google Scholar 

  86. Qi C, Öberg KI, Wilner DJ (2013) ApJ 765:34

    ADS  Google Scholar 

  87. Qi C, Öberg KI, Wilner DJ et al (2013) Science 341:630

    ADS  Google Scholar 

  88. Rapson VA, Kastner JH, Millar-Blanchaer MA, Dong R (2015) ApJL 815:L26

    ADS  Google Scholar 

  89. Raymond SN, Izidoro A (2017) Icarus 297:134

    ADS  Google Scholar 

  90. Riviere-Marichalar P, Ménard F, Thi WF et al (2012) A&A 538:LL3

    Google Scholar 

  91. Ros K, Johansen A (2013) A&A 552:A137

    ADS  Google Scholar 

  92. Salyk C, Lacy JH, Richter MJ et al (2015) ApJL 810:L24

    ADS  Google Scholar 

  93. Salyk C, Lacy J, Richter M et al (2019) ApJ 874:24

    ADS  Google Scholar 

  94. Salyk C, Pontoppidan KM, Blake GA et al (2008) ApJL 676:L49

    ADS  Google Scholar 

  95. Salyk C, Pontoppidan KM, Blake GA, Najita JR, Carr JS (2011) ApJ 731:130

    ADS  Google Scholar 

  96. Sato T, Okuzumi S, Ida S (2016) A&A 589:A15

    ADS  Google Scholar 

  97. Schoonenberg D, Okuzumi S, Ormel CW (2017) A&A 605:L28

    Google Scholar 

  98. Schwarz KR, Bergin EA, Cleeves LI et al (2016) ApJ 823:91

    ADS  Google Scholar 

  99. Takahashi SZ, Inutsuka S-I (2014) ApJ 794:55

    ADS  Google Scholar 

  100. Takahashi SZ, Inutsuka S-I (2016) AJ 152:184

    ADS  Google Scholar 

  101. Terada H, Tokunaga AT (2017) ApJ 834:115

    ADS  Google Scholar 

  102. Terada H, Tokunaga AT, Kobayashi N et al (2007) ApJ 667:303

    ADS  Google Scholar 

  103. Tominaga RT, Inutsuka S-I, Takahashi SZ (2018) PASJ 70:3

    ADS  Google Scholar 

  104. van der Marel N, van Dishoeck EF, Bruderer S et al (2013) Science 340:1199

    ADS  Google Scholar 

  105. van der Marel N, van Dishoeck EF, Bruderer S et al (2016) A&A 585:A58

    ADS  Google Scholar 

  106. van Dishoeck EF, Bergin EA, Lis DC, Lunine JI (2014) In: Beuther H et al (ed) Protostars and planets VI. University of Arizona Press, Tucson, AZ, p 835

    Google Scholar 

  107. van Dishoeck EF, Herbst E, Neufeld DA (2013) Chem Rev 113:9043

    Google Scholar 

  108. Wada K, Tanaka H, Okuzumi S et al (2013) A&A 559:AA62

    Google Scholar 

  109. Walsh C, Juhász A, Pinilla P et al (2014) ApJL 791:L6

    Google Scholar 

  110. Walsh KJ, Morbidelli A, Raymond SN, O’Brien DP, Mandell AM (2011) Nature 475:206

    ADS  Google Scholar 

  111. Zhang K, Bergin EA, Blake GA, Cleeves LI, Schwarz KR (2017) Nat Astron 1:0130

    ADS  Google Scholar 

  112. Zhang K, Blake GA, Bergin EA (2015) ApJL 806:L7

    ADS  Google Scholar 

  113. Zhang K, Pontoppidan KM, Salyk C, Blake GA (2013) ApJ 766:82

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shota Notsu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Notsu, S. (2020). Introduction. In: Water Snowline in Protoplanetary Disks. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-15-7439-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7439-9_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7438-2

  • Online ISBN: 978-981-15-7439-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics