Skip to main content

Climate Change Projections of Current and Future Distributions of the Endemic Loris lydekkerianus (Lorinae) in Peninsular India

  • Chapter
  • First Online:
Exploring Synergies and Trade-offs between Climate Change and the Sustainable Development Goals

Abstract

Loris lydekkerianus (L. lydekkerianus) are endemic primates of peninsular India. The current and future potential distribution and range shift of L. lydekkerianus were studied using a maximum entropy (maxent) machine learning algorithm. Four scenarios of the Intergovernmental Panel on Climate Change (IPCC)’s fifth assessment, that is, representative concentration pathway (RCP) 4.5 and RCP 8.5 for the years 2050 and 2070, were examined using observed ecological variables and known data of species occurrence, obtained from both published literature and field surveys. This supplied 200 species occurrence points. Spatial thinning was applied to reduce dataset biases. The preliminary extraction of species occurrence data using quantum geographic information system (QGIS 2.14) generated a residual value of <0.001 reflecting reliable extraction. This ecological model suggests an expansion of potentially suitable habitat of Loris lydekkerianus malabaricus in the central Western Ghats (WG) and shrinking of the habitat of Loris lydekkerianus lydekkerianus in the Eastern Ghats (EG). A third unnamed, undescribed subspecies of Loris lydekkerianus found during this investigation was more vulnerable to climate change. Field-collected datasets confirm that Loris lydekkerianus malabaricus prefer wetter habitats of the WG, whereas Loris lydekkerianus lydekkerianus were more common in the dry, rain-shadow areas of the WG and the Deccan plateau, extending into the EG and coastal areas of Tamil Nadu. The unnamed subspecies of L. lydekkerianus (hereafter L. lydekkerianus, ssp. A) prefers an intermediate climatic area, that is, neither the wet parts of the WG nor the dry parts. Ecological models on the future potential distribution of Loris lydekkerianus lydekkerianus predict positive expansion of the habitat for RCP 4.5 for 2050 and 2070, whereas the RCP 8.5 (2050) and RCP 8.5 (2070) scenarios predict high impacts on the habitat due to climate change. Range shift models predict a considerable shift in the present habitat range and expansion for Loris lydekkerianus malabaricus and Loris lydekkerianus lydekkerianus, respectively, and no expansion for the L. lydekkerianus ssp. A for 2050 and 2070. We also predict that suitable habitat areas of L. lydekkerianus ssp. A will shrink by 99%. Therefore, L. lydekkerianus ssp. A stands highly vulnerable to the changing climate of peninsular India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP (2015) nspThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38(5):541–545

    Article  Google Scholar 

  • Anderson RP, Raza A (2010) The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J Biogeogr 37(7):1378–1393

    Article  Google Scholar 

  • Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species–climate impact models under climate change. Glob Chang Biol 11(9):1504–1513

    Article  Google Scholar 

  • Bentsen M, Bethke I, Debernard JB, Iversen T, Kirkevåg A, Seland Ø, Drange H, Roelandt C, Seierstad IA, Hoose C, Kristjánsson JE (2013) The Norwegian earth system model, NorESM1-M-part 1: description and basic evaluation of the physical climate. Geosci Model Dev 6(3):687–720

    Article  Google Scholar 

  • Blandford WT (1888) Fauna of British India, Mammals. Taylor & Frances, London, p 47

    Google Scholar 

  • Bloom TD, Flower A, DeChaine EG (2018) Why georeferencing matters: introducing a practical protocol to prepare species occurrence records for spatial analysis. Ecol Evol 8(1):765–777

    Article  PubMed  Google Scholar 

  • Chaturvedi RK, Joshi J, Jayaraman M, Bala G, Ravindranath NH (2012) Multi-model climate change projections for India under representative concentration pathways. Curr Sci 103(7):791–802

    Google Scholar 

  • Clarke L, Edmonds J, Jacoby H, Pitcher H, Reilly J, Richels R (2007) Scenarios of greenhouse gas emissions and atmospheric concentrations. US Department of Energy Publication, Washington, DC

    Google Scholar 

  • Cordellier M, Pfenninger A, Streit B, Pfenninger M (2012) Assessing the effects of climate change on the distribution of pulmonate freshwater snail biodiversity. Mar Biol 159(11):2519–2531

    Article  Google Scholar 

  • Daniels RR (1992) Geographical distribution patterns of amphibians in the Western Ghats, India. J Biogeogr 19(5):521–529

    Article  Google Scholar 

  • Das S, Dutta S, Mangalam M, Verma RK, Rath S, Kumara HN, Singh M (2011) Prioritizing remnant forests for the conservation of Mysore slender lorises (Loris lyddekerianuslyddekerianus) in Karnataka, India through estimation of population density. Int J Primatol 32(5):1153

    Article  Google Scholar 

  • de Souza Muñoz ME, De Giovanni R, de Siqueira MF, Sutton T, Brewer P, Pereira RS, Canhos DAL, Canhos VP (2011) openModeller: a generic approach to species’ potential distribution modelling. GeoInformatica 15(1):111–135

    Article  Google Scholar 

  • Donner LJ, Wyman BL, Hemler RS, Horowitz LW, Ming Y, Zhao M, Austin J (2011) The dynamical core, physical parameterizations and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J Clim 24(13):3484–3519

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24(1):38–49

    Article  Google Scholar 

  • Ganesh SR, Chadramouli SR, Sreekar R, Shankar PG (2013) Reptiles of the central Western Ghats, India-a reappraisal and revised checklist, with emphasis on the Agumbe Plateau. Russ J Herpetol 20(3):181–189

    Google Scholar 

  • Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84(11):2809–2815

    Article  Google Scholar 

  • Griffies SM, Winton M, Donner LJ, Horowitz LW, Downes SM, Farneti R, Gnanadesikan A, Hurlin WJ, Lee HC, Liang Z, Palter JB (2011) The GFDL CM3 coupled climate model: characteristics of the ocean and sea ice simulations. J Clim 24(13):3520–3544

    Article  Google Scholar 

  • Groves C (1998) Systematics of tarsiers and lorises. Primates 39(1):13

    Google Scholar 

  • Gunnell Y (1997) Relief and climate in South Asia: the influence of the Western Ghats on the current climate pattern of peninsular India. Int J Climatol 17(11):1169–1182

    Google Scholar 

  • IUCN (2010) Red list of threatened species. International Union for Conservation of Nature. Available at: www.iucnredlist.org/mammals, 2008. Accessed on 2018-09-02

  • Kinnaird MF, Sanderson EW, O'brien TG, Wibisono HT, Woolmer G (2003) Deforestation trends in a tropical landscape and implications for endangered large mammals. Conserv Biol 17(1):245–257

    Article  Google Scholar 

  • Kumara HN, Singh M (2004) The influence of differing hunting practices on the relative abundance of mammals in two rainforest areas of the Western Ghats, India. Oryx 38(3):321–327

    Article  Google Scholar 

  • Kumara HN, Singh M, Kumar S (2006) Distribution, habitat correlates and conservation of Loris lydekkerianus in Karnataka, India. Int J Primatol 27(4):941–969

    Article  Google Scholar 

  • Kumara HN, Irfan-Ullah M, Kumar S (2009) Mapping potential distribution of slender loris subspecies in peninsular India. Endanger Species Res 7(1):29–38

    Article  Google Scholar 

  • Kumara HN, Sasi R, Chandran S, Radhakrishna S (2016) Distribution of the grey slender loris (Loris lyddekerianus Cabrera, 1908) in Tamil Nadu, southern India. Folia Primatol 87(5):291–302

    Article  Google Scholar 

  • Lewis JP (1917) The folklore of animals among Sinhalese and Tamils. Ceylon Antiqu 2(IV):236–238

    Google Scholar 

  • Linkie M, Chapron G, Martyr DJ, Holden J, Williams NL (2006) Assessing the viability of tiger subpopulations in a fragmented landscape. J Appl Ecol 43(3):576–586

    Article  Google Scholar 

  • Malcolm JR, Liu C, Neilson RP, Hansen L, Hannah LEE (2006) Global warming and extinctions of endemic species from biodiversity hotspots. Conserv Biol 20(2):538–548

    Article  PubMed  Google Scholar 

  • McGinley M (2007) South Western Ghats montane rain forests. In: Cutler JC (ed) Encyclopaedia of Earth. Environmental Information Coalition, National Council for Science and the Environment, Washington, DC

    Google Scholar 

  • Menon A, Levermann A, Schewe J, Lehmann J, Frieler K (2013) Consistent increase in Indian monsoon rainfall and its variability across CMIP-5 models. Earth Syst Dynam 4:287–300

    Article  Google Scholar 

  • Molur S, Brandon-Jones D, Dittus W, Eudey A, Kumar A, Singh M, Feeroz MM, Chalise M, Priya P, Anand Walker S (2003) The status of South Asian primates: Conservation Assessment and Management Plan (CAMP) Workshop Report

    Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747

    Article  PubMed  CAS  Google Scholar 

  • Nekaris KAI, Jayewardene J (2004) Survey of the slender loris (Primates, LorisidaeGray, 1821: Loris tardigradus Linnaeus, 1758 and Loris lydekkerianuscabrera, 1908) in Sri Lanka. J Zool 262(4):327–338

    Article  Google Scholar 

  • Nekaris A, Singh M, Kumar CA (2008) Loris lydekkerianus. The IUCN Red List of Threatened Species 2008: e.T44722A10942453. https://doi.org/10.2305/IUCN.UK.2008.RLTS.T44722A10942453.en. Accessed on 2018-09-11

  • O’Donnell MS, Ignizio DA (2012) Bioclimatic predictors for supporting ecological applications in the conterminous United States. US Geological Survey Data Series, 691(10)

    Google Scholar 

  • Oniga E, Chirilă C, Stătescu F (2017) Accuracy assessment of a complex building 3d model reconstructed from images acquired with a low-cost Uas. Int Arch Photogramm Remote Sens Spat Inf Sci 42:551

    Article  Google Scholar 

  • Osman Hill WC (1933) A monograph on the genus Loris. Ceylon J Sci (B) 18:89–129

    Google Scholar 

  • Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P, Dubash NK (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, p 151

    Google Scholar 

  • Pearson RG, Dawson TP, Berry PM, Harrison PA (2002) SPECIES: a spatial evaluation of climate impact on the envelope of species. Ecol Model 154(3):289–300

    Article  Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34(1):102–117

    Article  Google Scholar 

  • Pepe MS (2000) Receiver operating characteristic methodology. J Am Stat Assoc 95:308–311

    Article  Google Scholar 

  • Peterson AT, Papeş M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Model 213(1):63–72

    Article  Google Scholar 

  • Phillips SJ (2017) A Brief Tutorial on Maxent. Available from the following url: http://biodiversityinformatics.amnh.org/open_source/maxent/ Accessed on 2018-08-20

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2):161–175

    Article  Google Scholar 

  • Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. In: Proceedings of the twenty-first international conference on Machine learning, Banff, Canada, p 83

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3–4):231–259

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME (2017) Opening the black box: An open-source release of Maxent. Ecography 40(7):887–893

    Article  Google Scholar 

  • Phillips SJ, Dudík M, Schapire RE (2018) [Internet] Maxent software for modeling species niches and distributions (Version 3.4.1). http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed on 2018-11-14

  • Ponder WF, Carter GA, Flemons P, Chapman RR (2001) Evaluation of museum collection data for use in biodiversity assessment. Conserv Biol 15(3):648–657

    Article  Google Scholar 

  • Radhakrishna S, Kumara HN, Sasi R (2011) Distribution patterns of slender loris subspecies (Loris lydekkerianus) in Kerala, southern India. Int J Primatol 32(4):1007–1019

    Article  Google Scholar 

  • Ramaswami LS, Anand Kumar TC (1962) Reproductive cycle of the slender loris. Naturwissenschaften 49(5):115–116

    Article  Google Scholar 

  • Rao P (1994) Occurrence of the slender loris Loristardigradus in south coastal Andhra Pradesh, India. J Bombay Nat Hist Soc 91:303

    Google Scholar 

  • Rawat GS (1997) Conservation status of forests and wildlife in the Eastern Ghats, India. Environ Conserv 24(4):307–315

    Article  CAS  Google Scholar 

  • Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Clim Chang 109(1–2):33

    Article  CAS  Google Scholar 

  • Rodgers WA, Panwar HS (1988) Planning a wildlife protected area network in India. v. 1: the report. – v. 2: State summaries. 608

    Google Scholar 

  • Roos C, Boonratana R, Supriatna J, Fellowes JR, Groves CP, Nash SD, Rylands AB, Mittermeier RA (2014) An updated taxonomy and conservation status review of Asian primates. Asian Primate J 4:1

    Google Scholar 

  • Sasi R, Kumara HN (2014) Distribution and relative abundance of the slender loris Lorislydekkerianus in southern Kerala, India. Primate Conserv 28:165–171

    Article  Google Scholar 

  • Schulze H, Meier B (1995) The subspecies of Loris tardigradus and their conservation status: a review. In: Creatures of the dark. Springer, Boston, pp 193–209

    Chapter  Google Scholar 

  • Schulze H, Ramanathan A, Fitch-Snyder H, Nekaris KAI, Singh M, Kaumanns W (2005) Care of rescued south Indian lorises with guidelines for hand-rearing infants. Back to the wild: studies in wildlife rehabilitation. Wildlife Trust of India, New Delhi, pp 104–118

    Google Scholar 

  • Singh M, Lindburg DG, Udhayan A, Kumar MA, Kumara HN (1999) Status survey of slender loris Loristardigraduslydekkerianus in Dindigul, Tamil Nadu, India. Oryx 33(1):31–37

    Article  Google Scholar 

  • Singh M, Kumar MA, Kumara HN, Mohnot SM (2000) Distribution and conservation of slender lorises (Loris tardigraduslydekkerianus) in southern Andhra Pradesh, South India. Int J Primatol 21(4):721–730

    Article  Google Scholar 

  • Soberon J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers Inform 2(0):1–10

    Article  Google Scholar 

  • Sony RK, Sen S, Kumar S, Sen M, Jayahari KM (2018) Niche models inform the effects of climate change on the endangered NilgiriTahr (Nilgiritragushylocrius) populations in the southern Western Ghats, India. Ecol Eng 120:355–363

    Article  Google Scholar 

  • Subrahmanyam VP (1982) Eastern Ghats Region, vegetation and climatic aspects. In: Proceedings of the seminar on resources, development and environment on the Eastern Ghats. p 26

    Google Scholar 

  • Subrahmanyam S (2015) Effective climate change adaptation strategies for biodiversity conservation. Front Environ Sci 3:32

    Article  Google Scholar 

  • van Proosdij AS, Sosef MS, Wieringa JJ, Raes N (2016) Minimum required number of specimen records to develop accurate species distribution models. Ecography 39(6):542–552

    Article  Google Scholar 

  • Voskamp A, Rode EJ, Coudrat CN, Wilson RJ, Nekaris KAI (2014) Modelling the habitat use and distribution of the threatened Javan slow loris Nycticebusjavanicus. Endanger Species Res 23(3):277–286

    Article  Google Scholar 

  • Wang L, Hu W, Magalhaes RJS, Bi P, Ding F, Sun H, Li S, Yin W, Wei L, Liu Q, Haque U (2014) The role of environmental factors in the spatial distribution of Japanese encephalitis in mainland China. Environ Int 73:1–9

    Article  PubMed  Google Scholar 

  • Wiens JA, Stralberg D, Jongsomjit D, Howell CA, Snyder MA (2009) Niches, models and climate change: assessing the assumptions and uncertainties. Proc Natl Acad Sci 106(Suppl 2):19729–19736

    Article  PubMed  PubMed Central  Google Scholar 

  • Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, NCEAS Predicting Species Distributions Working Group (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14(5):763–773

    Article  Google Scholar 

  • Yang XQ, Kushwaha SPS, Saran S, Xu J, Roy PS (2013) Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol Eng 51:83–87

    Article  CAS  Google Scholar 

  • Young N, Carter L, Evangelista P (2011) A MaxEnt model v3.3.3 e tutorial (ArcGIS v10). Fort Collins, Colorado

    Google Scholar 

  • Zadrozny B (2004) Learning and evaluating classifiers under sample selection bias. In: Proceedings of the twenty-first international conference on Machine learning, ACM, NY, USA, p 114

    Google Scholar 

Download references

Acknowledgements

We thank Anantanārāyanan Rāman (Professor of Ecology at School of Wine and Agricultural Sciences, Charles Sturt University, NSW 2800, Australia) for reviewing this work and for his expert comments that helped us make substantial improvements on this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreenath Subrahmanyam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Subrahmanyam, S., Das, M.L., Kumara, H.N. (2021). Climate Change Projections of Current and Future Distributions of the Endemic Loris lydekkerianus (Lorinae) in Peninsular India. In: Venkatramanan, V., Shah, S., Prasad, R. (eds) Exploring Synergies and Trade-offs between Climate Change and the Sustainable Development Goals . Springer, Singapore. https://doi.org/10.1007/978-981-15-7301-9_13

Download citation

Publish with us

Policies and ethics