Skip to main content

Theoretical Implications for Surface Plasmon Resonance Based on Microstructured Optical Fiber

  • Conference paper
  • First Online:
Progress in Optomechatronics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 249))

Abstract

Surface plasmon resonance (SPR) is an appropriate subtle approach for dictating the changes in the refractive index (RI) happening at the metal/dielectric interface, and has been intensively utilized as a sensing technique. A novel hexagonal microstructured optical fiber (H-MOF) based SPR sensing probes with chemically stable and active plasmonic material coating is proposed. The sensing film is utilized exterior to the fiber structure for accessing the simple sensing probe configuration. The proposed sensing structure is consisting of symmetrical circular air-holes in the dielectric cross-section, and its guiding characteristics as well as the sensing performance are theoretically evaluated. Using wavelength interrogation method, we reported the sensitivity of ~2500 nm/RIU (RIU: Refractive Index Unit).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Homola, Optical fiber sensor based on surface plasmon excitation. Sens. Actuators, B 29, 401–405 (1995)

    Article  Google Scholar 

  2. B. Liedberg, C. Nylander, I. Sundstrom, Surface plasmon resonance for gas detection and biosensing. Sens. Actuators, B 4, 299–304 (1983)

    Article  Google Scholar 

  3. K. Matsubara, S. Kawata, S. Minami, Optical chemical sensor based on surface plasmon measurement. Appl. Opt. 27, 1160–1163 (1988)

    Article  ADS  Google Scholar 

  4. L.M. Zhang, D. Uttamchandani, Optical chemical sensing employing surface plasmon resonance. Electron. Lett. 24, 1469–1470 (1988)

    Article  ADS  Google Scholar 

  5. A.M. Scheggi, F. Baldini, Chemical sensors with optical fibers. Int. J. Optoelectron. 8, 133–156 (1993)

    Google Scholar 

  6. R. Slavik, J. Homola, J. Ctyroky, Miniaturization of fiber optic surface plasmon resonance sensor. Sens. Actuators, B 51, 311–315 (1998)

    Article  Google Scholar 

  7. B. Lee, Review of the present status of optical fiber sensors. Opt. Fiber Technol. 9, 57–79 (2003)

    Article  ADS  Google Scholar 

  8. M. Kanso, S. Cuenot, G. Louarn, Sensitivity of optical fiber sensor based on surface plasmon resonance: modeling and experiments. Plasmonics 3, 49–57 (2008)

    Article  Google Scholar 

  9. B. Lee, S. Roh, J. Park, Current status of micro- and nano-structured optical fiber sensors. Opt. Fiber Technol. 15, 209–221 (2009)

    Article  ADS  Google Scholar 

  10. D.K.C. Wu, B.T. Kuhlmey, B.J. Eggleton, Ultrasensitive photonic crystal fiber refractive index sensor. Opt. Lett. 34, 322–324 (2009)

    Article  ADS  Google Scholar 

  11. P.St.J. Russell, Photonic crystal fibers. Science 299, 358–362 (2003)

    Google Scholar 

  12. J.C. Knight, Photonic crystal fibers. Nature 424, 847–851 (2003)

    Article  ADS  Google Scholar 

  13. P.St.J. Russell, Photonic crystal fibers. J. Lightwave Technol. 24, 4729–4749 (2006)

    Google Scholar 

  14. P.J.A. Sazio, A. Amezcua-Correa, C.E. Finlayson, J.R. Hayes, T.J. Scheidemantel, N.F. Baril, B.R. Jackson, D.-J. Won, F. Zhang, E.R. Margine, V. Gopalan, V.H. Crespi, J.V. Badding, Microstructured optical fibers as high-pressure microfluidic reactors. Science 311, 1583–1586 (2006)

    Article  ADS  Google Scholar 

  15. A.A. Rifat, R. Ahmed, A.K. Yetisen, H. Butt, A. Sabouri, G.A. Mahdiraji, S.H. Yun, F.R.M. Adikan, Photonic crystal fiber based plasmonic sensors. Sens. Actuators, B 243, 311–325 (2017)

    Article  Google Scholar 

  16. M. Hautakorpi, M. Mattinen, H. Ludvigsen, Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber. Opt. Express 16, 8427–8432 (2008)

    Article  ADS  Google Scholar 

  17. A.A. Rifat, Md.R. Hasan, R. Ahmed, H. Butt, Photonic crystal fiber-based plasmonic biosensor with external sensing approach. J. Nanophotonics 12, 012503 (2017)

    Article  ADS  Google Scholar 

  18. S. Chakma, Md.A. Khalek, B.K. Paul, K. Ahmed, Md.R. Hasan, A.N. Bahar, Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: design and analysis. Sens. Bio-Sens. Res. 18, 7–12 (2018)

    Article  Google Scholar 

  19. A. Hassani, M. Skorobogatiy, Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt. Express 14, 11616–11621 (2006)

    Article  ADS  Google Scholar 

  20. A. Hassani, M. Skorobogatiy, Design criteria for microstructured optical fiber based surface plasmon resonance sensors. JOSA B 24, 1423–1429 (2007)

    Article  ADS  Google Scholar 

  21. X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, C. Li, A selectively coated photonic crystal fiber based surface plasmon resonance sensor. J. Opt. 12, 015005 (2010)

    Article  ADS  Google Scholar 

  22. A.K. Ghatak, K. Thyagarajan, M.R. Shenoy, Numerical analysis of planar optical waveguides using matrix approach. J. Lightwave Technol. LT-5, 660–667 (1987)

    Google Scholar 

  23. D.K. Sharma, A. Sharma, Characteristic of microstructured optical fibers: an analytical approach. Opt. Quant. Electron. 44, 415–424 (2012)

    Article  Google Scholar 

  24. D.K. Sharma, A. Sharma, On the mode field diameter of microstructured optical fibers. Opt. Commun. 291, 162–168 (2013)

    Article  ADS  Google Scholar 

  25. D.K. Sharma, A. Sharma, Splicing of index-guiding microstructured optical fibers and single-mode fibers by controlled air-hole collapse: an analytical approach. Opt. Quant. Electron. 46, 409–422 (2014)

    Article  Google Scholar 

  26. D.K. Sharma, S.M. Tripathi, A. Sharma, Optical characteristics of polymer-infused microstructured optical fiber using an analytical field model. Optik 140, 1–9 (2017)

    Article  ADS  Google Scholar 

  27. D.K. Sharma, A. Sharma, S.M. Tripathi, Cladding mode coupling in long-period gratings in index-guided microstructured optical fibers. Appl. Phys. B 123, 187-1–187-12 (2017)

    Google Scholar 

  28. D.K. Sharma, A. Sharma, S.M. Tripathi, Thermo-optic characteristics of hybrid polymer/silica microstructured optical fiber: an analytical approach. Opt. Mater. 78, 508–520 (2018)

    Article  ADS  Google Scholar 

  29. D.K. Sharma, S.M. Tripathi, Optical performance of tellurite glass microstructured optical fiber for slow-light generation assisted by stimulated Brillouin scattering. Opt. Mater. 94, 196–205 (2019)

    Article  ADS  Google Scholar 

  30. D.K. Sharma, S.M. Tripathi, A. Sharma, Modal analysis of high-index core tellurite glass microstructured optical fibers in infrared regime. J. Non-Cryst. Solids 511, 147–160 (2019)

    Article  ADS  Google Scholar 

  31. D.K. Sharma, S.M. Tripathi, Theoretical analysis for exploring the optical performance of solid-core polymer based microstructured optical fibers. Phys. B 572, 279–290 (2019)

    Article  ADS  Google Scholar 

  32. D.K. Sharma, S.M. Tripathi, Implications of theoretical analysis to explore the functional core dimension in one-rod core microstructured optical fibers. Opt. Quant. Electron. 51, 318-1–318-19 (2019)

    Google Scholar 

  33. I.H. Malitson, Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 55, 1205–1209 (1965)

    Article  ADS  Google Scholar 

  34. J. Homola, On the sensitivity of surface plasmon resonance sensors with spectral interrogation. Sens. Actuators, B 41, 207–211 (1997)

    Article  Google Scholar 

  35. L. Zheng, X. Zhang, X. Ren, J. Gao, L. Shi, X. Liu, Q. Wang, Y. Huang, Surface plasmon resonance sensors based on Ag-metalized nanolayer in microstructured optical fibers. Opt. Laser Technol. 43, 960–964 (2010)

    Article  ADS  Google Scholar 

  36. A.A. Rifat, G.A. Mahdiraji, Y.G. Shee, Md.J. Shawon, F.R.M. Adikan, A novel photonic crystal fiber biosensor using surface plasmon resonance. Procedia Eng. 140, 1–7 (2016)

    Article  Google Scholar 

  37. Y. Zhao, Z. Deng, J. Li, Photonic crystal fiber based surface plasmon resonance chemical sensors. Sens. Actuators, B 202, 557–567 (2014)

    Google Scholar 

  38. Y. Li, C. Wang, Y. Chen, M. Hu, B. Liu, L. Chai, Solution of the fundamental space-filling mode of photonic crystal fibres: numerical method versus analytical approaches. Appl. Phys. B 85, 597–601 (2006)

    Article  ADS  Google Scholar 

  39. Z. Zhu, T.G. Brown, Analysis of the space filling modes of photonic crystal fibers. Opt. Express 8, 547–554 (2001)

    Article  ADS  Google Scholar 

  40. A.K. Sharma, B. Kaur, Chalcogenide fiber-optic SPR chemical sensor with MoS2 monolayer, polymer clad, and polythiophene layer in NIR using selective ray launching. Opt. Fiber Technol. 43, 163–168 (2018)

    Article  ADS  Google Scholar 

  41. A.K. Sharma, B.D. Gupta, Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection. Opt. Fiber Technol. 12, 87–100 (2006)

    Article  ADS  Google Scholar 

  42. C. Liu, W. Su, F. Wang, X. Li, L. Yang, T. Sun, H. Mu, P.K. Chu, Theoretical assessment of a highly sensitive photonic crystal fibre based on surface plasmon resonance sensor operating in the near-infrared wavelength. J. Mod. Opt. 66, 1–6 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

D. K. Sharma sincerely acknowledges the financial support provided by Indian Institute of Technology Kanpur, Kanpur (U.P), India through Institute Post-doctoral Fellowship (PDF-102) for carrying out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, D.K., Tripathi, S.M. (2020). Theoretical Implications for Surface Plasmon Resonance Based on Microstructured Optical Fiber. In: Bhattacharya, I., Otani, Y., Lutz, P., Cherukulappurath, S. (eds) Progress in Optomechatronics. Springer Proceedings in Physics, vol 249. Springer, Singapore. https://doi.org/10.1007/978-981-15-6467-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6467-3_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6466-6

  • Online ISBN: 978-981-15-6467-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics