Skip to main content

Local Temperature Monitoring Method of a Rotor Using Near-Infrared Fiber Bragg Grating

  • Conference paper
  • First Online:
Progress in Optomechatronics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 249))

Abstract

This article proposes a temperature monitoring method that is able to get the local variation of temperature in several positions of the rotor of an electrical machine during its rotation. The measurement principle uses a structured Polymer Optical Fiber Bragg Grating (POFBG) sensor. The existing methods estimates the temperature based on the external casing or hot spots. The aim of the proposed method is to monitor the temperature of the rotor during its operation in order to detect early thermal aging of electrical machines. The proposed contactless measurement concept and implementation into an academic rotating machine are described. Then, optical modeling of the POFBG is realized and the optical heating system is calibrated. Finally, experimental setup is carried out to make possible the temperature measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. OECD/IEA, Energy efficiency policy opportunities for electric motor driven systems executive summary. The global assessment (2011)

    Google Scholar 

  2. T.G. Kollie, R.L. Anderson, J.L. Horton, M.J. Roberts, Large thermocouple thermometry errors caused by magnetic fields. Rev. Sci. Instrum. 48(5), 501–511 (1977)

    Article  ADS  Google Scholar 

  3. M. Marković, L. Saunders, Y. Perriard, Determination of the thermal convection coefficient for a small electric motor, in Conference Record—IAS Annual Meeting (IEEE Industry Applications Society) (2006)

    Google Scholar 

  4. D.A. Staton, A. Cavagnino, Convection heat transfer and flow calculations suitable for electric machines thermal models. IEEE Trans. Ind. Electron. (2008)

    Google Scholar 

  5. J.M. López-Higuera, L.R. Cobo, A.Q. Incera, A. Cobo, Fiber optic sensors in structural health monitoring. J. Light. Technol. 29(4), 587–608 (2011)

    Article  ADS  Google Scholar 

  6. R. Correia, S. James, S.W. Lee, S.P. Morgan, S. Korposh, Biomedical application of optical fibre sensors. J. Opt. (United Kingdom) 20(7) (2018)

    Google Scholar 

  7. K. de Morais Sousa, W. Probst, F. Bortolotti, C. Martelli, J.C.C. da Silva, Fiber bragg grating temperature sensors in a 6.5-MW generator exciter bridge and the development and simulation of its thermal model. Sensors (Switzerland) 14(9), 16651–16663 (2014)

    Google Scholar 

  8. L.K. Cheng et al., Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: background and experimental observation. Eng. Struct. 28(5), 648–659 (2005)

    ADS  Google Scholar 

  9. Z. Ma et al., Fiber bragg gratings sensors for aircraft wing shape measurement: recent applications and technical analysis. Sensors 2019(19), 55 (2018)

    Google Scholar 

  10. D.J. Webb, Fibre Bragg grating sensors in polymer optical fibres. Meas. Sci. Technol. 26(9), 92004 (2015)

    Article  Google Scholar 

  11. R.C. Leite et al., Analysis of thermo-mechanical stress in fiber bragg grating used for hydro-generator rotor temperature monitoring. J. Microwaves, Optoelectron. Electromagn. Appl. 16(2), 445–459 (2017)

    Google Scholar 

  12. C. Hudon, C. Guddemi, S. Gingras, R.C. Leite, L. Mydlarski, Rotor temperature monitoring using fiber Bragg gratings, in IEEE Electrical Insulation Conference (EIC), 2016, pp. 456–459 (2016)

    Google Scholar 

  13. M.M. Werneck, R.C. da S. B. Allil, B.A. Ribeiro, Calibration and operation of a fibre Bragg grating temperature sensing system in a grid-connected hydrogenerator. IET Sci. Meas. Technol. 7(1), 59–68 (2013)

    Google Scholar 

  14. D. Hind et al., Use of optical fibres for multi-parameter monitoring in electrical AC machines, in Proceedings of the 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED 2017), vol. 2017-January, pp. 208–212 (2017)

    Google Scholar 

  15. M.M. Werneck., R.C.S.B. Allil, B.A. Ribeiro, F.V.B de Nazaré, A guide to fiber Bragg grating sensors, in Current Trends in Short-and Long-period Fiber Gratings (InTech, 2013), pp. 1–24

    Google Scholar 

  16. P. Lecoy, Les fibres optiques en capteurs et en instrumentation. La Rev. 3E. I, no. 85 (2016)

    Google Scholar 

  17. The Engineering Toolbox, Coefficients of Linear Thermal Expansion. The Engineering Toolbox, 2015. [Online]. Available: https://www.engineeringtoolbox.com/linear-expansion-coefficients-d_95.html. Accessed: 9 Mar 2019

  18. E.M.J. Weber, A.V. Dotsenko, L.B. Glebov, V.A. Tsekhomsky, Handbook of Optical Laser and Optical Science and Technology Series Physics and Chemistry of Photochromic Glasses

    Google Scholar 

  19. M. Large, L. Poladian, G. Barton, M.A. van Eijkelenborg, Microstructured Polymer Optical Fiber (Springer Science & Business Media, 2008)

    Google Scholar 

  20. L.A. Weller-Brophy, D.G. Hall, Analysis of waveguide gratings: application of Rouard’s method. J. Opt. Soc. Am. A 2(6), 863 (1985)

    Article  ADS  Google Scholar 

  21. L. Poladian, Variational technique for nonuniform gratings and distributed-feedback lasers. J. Opt. Soc. Am. A 11(6), 1846 (2008)

    Article  ADS  Google Scholar 

  22. K.A. Winick, Effective-index method and coupled-mode theory for almost-periodic waveguide gratings: a comparison. J. Opt. Soc. Am. A 31(6), 757 (1992)

    Google Scholar 

  23. S. Udoh, J. Njuguma, R. Prabhu, Modelling and simulation of fiber Bragg grating characterization for oil and gas sensing applications, in First International Conference on Systems Informatics, Modelling and Simulation, pp. 213–218 (2014)

    Google Scholar 

  24. A. Ikhlef, R. Hedara, M. Chikh-Bled, Uniform Fiber Bragg Grating modeling and simulation used matrix transfer method. IJCSI Int. J. Comput. Sci. Issues (2012)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Hauts-de-France Region and the Lebanese University for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Abboud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abboud, R., Al Hajjar, H., Ospina, A., Chaaya, J.A., Zaatar, Y., Lamarque, F. (2020). Local Temperature Monitoring Method of a Rotor Using Near-Infrared Fiber Bragg Grating. In: Bhattacharya, I., Otani, Y., Lutz, P., Cherukulappurath, S. (eds) Progress in Optomechatronics. Springer Proceedings in Physics, vol 249. Springer, Singapore. https://doi.org/10.1007/978-981-15-6467-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6467-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6466-6

  • Online ISBN: 978-981-15-6467-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics