Skip to main content

Optically Induced Transparency in Two Cavity System

  • Conference paper
  • First Online:
Progress in Optomechatronics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 249))

  • 291 Accesses

Abstract

We analyze theoretically the optically induced transparency for a weak probe field in two cavity system; one linear cavity coupled to a nonlinear cavity. The nonlinear cavity contains optical Kerr medium. The two cavities are coupled via tunable photon hopping. The transmission rate of the output field is obtained by solving Heisenberg-Langevin equations for the field modes and standard input-output formalism. The rate can be controlled by photon hopping strength and loss factors. The transmission spectra show symmetric dip-peak-dip structure and tunable transparency window. The obtained result may be useful for optical communications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Zheng et al., Optically induced transparency in a micro-cavity. Light Sci. Appl. 5, e16072 (2016)

    Google Scholar 

  2. N. Dong et al., Optically induced transparency and excitation in dispersed MoS2, MoSe2 and graphene nanosheets. Adv. Opt. Mater. 5, 19 (2017)

    Article  Google Scholar 

  3. T.C.H. Liew, A.V. Kavokin, Optically induced transparency in bosonic cascade lasers. Opt. Lett. 43, 259 (2018)

    Article  ADS  Google Scholar 

  4. Y. Wu, X. Yang, Four-wave mixing in molecular magnets via electromagnetically induced transparency. Phys. Rev. B 76, 054425 (2007)

    Article  ADS  Google Scholar 

  5. S. Zhang et al., Plasmon induced transparency in metamaterials. Phys. Rev. Lett. 101, 047401 (2008)

    Article  ADS  Google Scholar 

  6. P. Tassin et al., Low-loss metamaterials based on classical electromagnetically induced transparency. Phys. Rev. Lett. 102, 053901 (2009)

    Article  ADS  Google Scholar 

  7. K.A. Yasir, W.M. Liu, Controlled electromagnetically induced transparency and fano resonances in hybrid BEC-optomechanics. Sci. Rep. 6, 22651 (2016)

    Article  ADS  Google Scholar 

  8. M.F. Yanik et al., Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency. Phys. Rev. Lett. 93, 233903 (2004)

    Article  ADS  Google Scholar 

  9. J.T. Hill et al., Coherent optical wavelength conversion via cavity optomechanics. Nat. Commun. 3, 1196 (2012)

    Article  ADS  Google Scholar 

  10. C. Liu et al., Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature (London) 409, 490 (2001)

    Google Scholar 

  11. G.S. Agarwal, S. Huang, Optomechanical systems as single photon router. Phys. Rev. A 85, 021801 (2012)

    Article  ADS  Google Scholar 

  12. H. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985)

    Google Scholar 

  13. L. Xu, B.C. Wang, Optical spectral bistability in a semiconductor fibre ring laser through gain saturation in an SOA. IEEE Photon. Tech. Lett. 14, 149 (2002)

    Article  ADS  Google Scholar 

  14. A. Faraon et al., Integrated quantum optical networks based on quantum dots and photonic crystals. New J. Phys. 13, 055025 (2011)

    Article  ADS  Google Scholar 

  15. E.A. Sete, H. Eleuch, Controllable nonlinear effects in an optomechanical resonator containing a quantum well. Phys. Rev. A 85, 043824 (2012)

    Article  ADS  Google Scholar 

  16. K. Mukherjee, P.C. Jana, Controlled optical bistability in parity-time symmetry micro-cavities: possibility of all optical switching. Phys. E: Low-Dimension. Syst. Nanostruct. 117, 113780 (2019)

    Google Scholar 

  17. F. Zou et al., Photon blockade effect in a coupled cavity system. arxiv: 1803.06642v1[quant-ph] (2018)

    Google Scholar 

  18. K.J. Vahala, Optical microcavities. Nature (London) 424, 839 (2003)

    Google Scholar 

  19. K.J. Vahala, in Optical Microcavities. Advanced Series in Applied Physics, vol. 5 (World Scientific, 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kousik Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mukherjee, K., Jana, P.C. (2020). Optically Induced Transparency in Two Cavity System. In: Bhattacharya, I., Otani, Y., Lutz, P., Cherukulappurath, S. (eds) Progress in Optomechatronics. Springer Proceedings in Physics, vol 249. Springer, Singapore. https://doi.org/10.1007/978-981-15-6467-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6467-3_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6466-6

  • Online ISBN: 978-981-15-6467-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics