Skip to main content

Deep Learning for Magnetic Resonance Images of Gliomas

  • Chapter
  • First Online:
Deep Learning for Cancer Diagnosis

Part of the book series: Studies in Computational Intelligence ((SCI,volume 908))

  • 938 Accesses

Abstract

Gliomas are tumors that arise in the glial cells of the brain and spine. Gliomas are one of the most common brain cancers, and comprise 80% of all malignant brain tumours. Gliomas are classified by cell type, grade, and location. Prognosis of patients presenting with high grade gliomas remains poor. The gold standard for grading of gliomas remains histopathology, but a working radiological diagnosis can be established from a magnetic resonance imaging (MRI) scan. MRI is typically used throughout the patient pathway because routine structural imaging provides detailed anatomical and pathological information. In addition, advanced techniques can provide additional physiological detail. Traditionally, MRIs were read exclusively by radiologists, but improvements in machine learning has sparked considerable interest in its application to enhanced and automated diagnostic tools. Machine learning approaches are also of interest in monitoring the progression of low grade gliomas, and in monitoring of patients undergoing treatment. Convolutional neural networks (CNNs), especially when trained using transfer learning, have been shown to grade gliomas with up to 94% accuracy. Given an MR image of a brain tumour, we wish to manually segment the various tissues to aid diagnoisis and other assessments. This manual process is difficult and laborious; hence there is demand for automatic image segmentation of brain tumors. Public datasets and the BRATS benchmark have enabled clearer and more objective comparison of segmentation techniques. State-of-the art automated segmentation of gliomas is currently represented by deep learning methods. Deep learning is also now on the rise for prediction of molecular biomarkers. Novel approaches to explainable artificial intelligence are now required to aid the extraction of novel useful features from machine learning approaches. Finally, CNNs have been developed to make predictions of patient survival times. There are many exciting new directions for this field, from novel CNN architectures, to the integration of information from advanced MRI and complementary imaging modalities and spectroscopic techniques. In time, this may lead to clinically acceptable automation of a variety of radiological determinations, with positive consequences for patient outcomes. In this chapter, we will give an overview for engineers and computer scientists of the deep learning applications used in glioma detection, characterization/grading and overall survival prognosis of the patients. We will highlight the limitations and challenges of deep learning techniques as well as the potential future of these methods in prognosis, clinical diagnostics, and decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Amin, M. Sharif, N. Gul, M. Raza, M.A. Anjum, M.W. Nisar, S.A.C. Bukhari, Brain tumor detection by using stacked autoencoders in deep learning. J. Med. Syst. 44(2), 32 (2020). https://doi.org/10.1007/s10916-019-1483-2

    Article  Google Scholar 

  2. S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J.S. Kirby, J.B. Freymann, K. Farahani, C. Davatzikos, Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

    Google Scholar 

  3. G. Balakrishnan, A. Zhao, M.R. Sabuncu, A.V. Dalca, J. Guttag, An unsupervised learning model for deformable medical image registration, in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018), pp. 9252–9260. https://doi.org/10.1109/CVPR.2018.00964

  4. P. Barone, G. Sebastiani, A new method of magnetic resonance image reconstruction with short acquisition time and truncation artifact reduction. IEEE Trans. Med. Imag. 11(2), 250–259 (1992)

    Google Scholar 

  5. S. Bisdas, H. Shen, S. Thust, V. Katsaros, G. Stranjalis, C. Boskos, S. Brandner, J. Zhang, Texture analysis-and support vector machine-assisted diffusional kurtosis imaging may allow in vivo gliomas grading and IDH-mutation status prediction: a preliminary study. Sci. Rep. 8(1), 1–9 (2018)

    Google Scholar 

  6. X. Cao, J. Yang, J. Zhang, D. Nie, M. Kim, Q. Wang, D. Shen, Deformable image registration based on similarity-steered CNN regression, in Medical image computing and computer-assisted intervention : MICCAI—International Conference on Medical Image Computing and Computer-Assisted Intervention, vol. 10433 (2017), pp. 300–308

    Google Scholar 

  7. K. Chang, A.L. Beers, H.X. Bai, J.M. Brown, K.I. Ly, X. Li, J.T. Senders, V.K. Kavouridis, A. Boaro, C. Su, W.L. Bi, O. Rapalino, W. Liao, Q. Shen, H. Zhou, B. Xiao, Y. Wang, P.J. Zhang, M.C. Pinho, P.Y. Wen, T.T. Batchelor, J.L. Boxerman, O. Arnaout, B.R. Rosen, E.R. Gerstner, L. Yang, R.Y. Huang, J. Kalpathy-Cramer, Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement. Neuro-Oncology 21(11), 1412–1422 (2019). https://doi.org/10.1093/neuonc/noz106

    Article  Google Scholar 

  8. P. Chang, J. Grinband, B. Weinberg, M. Bardis, M. Khy, G. Cadena, M.Y. Su, S. Cha, C. Filippi, D. Bota et al., Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. Am. J. Neuroradiol. 39(7), 1201–1207 (2018)

    Google Scholar 

  9. P.D. Chang, Fully convolutional deep residual neural networks for brain tumor segmentation, in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, ed. by A. Crimi, B. Menze, O. Maier, M. Reyes, S. Winzeck, H. Handels (Springer International Publishing, Berlin, 2016)

    Google Scholar 

  10. L. Chato, E. Chow, S. Latifi, Wavelet transform to improve accuracy of a prediction model for overall survival time of brain tumor patients based on MRI images, in 2018 IEEE International Conference on Healthcare Informatics (ICHI) (IEEE, 2018), pp. 441–442

    Google Scholar 

  11. A. Chattopadhay, A. Sarkar, P. Howlader, V.N. Balasubramanian, Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks, in 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) (IEEE, 2018), pp. 839–847

    Google Scholar 

  12. H. Chen, Q. Dou, L. Yu, J. Qin, P.A. Heng, Voxresnet: deep voxelwise residual networks for brain segmentation from 3d MR images. NeuroImage 170, 446–455 (2017). https://doi.org/10.1016/j.neuroimage.2017.04.041

    Article  Google Scholar 

  13. K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, S. Moore, S. Phillips, D. Maffitt, M. Pringle et al., The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imag. 26(6), 1045–1057 (2013)

    Google Scholar 

  14. R.R. Colen, M. Vangel, J. Wang, D.A. Gutman, S.N. Hwang, M. Wintermark, R. Jain, M. Jilwan-Nicolas, J.Y. Chen, P. Raghavan et al., Imaging genomic mapping of an invasive MRI phenotype predicts patient outcome and metabolic dysfunction: a TCGA glioma phenotype research group project. BMC Med. Genomics 7(1), 30 (2014)

    Google Scholar 

  15. P. Coupé, P. Yger, S. Prima, P. Hellier, C. Kervrann, C. Barillot, An optimized blockwise nonlocal means denoising filter for 3-d magnetic resonance images. IEEE Trans. Med. Imag. 27(4), 425–441 (2008)

    Google Scholar 

  16. S. Cui, L. Mao, J. Jiang, C. Liu, S. Xiong, Automatic semantic segmentation of brain gliomas from MRI images using a deep cascaded neural network. J. Healthc. Eng. 2018, 1–14 (2018). https://doi.org/10.1155/2018/4940593

  17. H. Dong, G. Yang, F. Liu, Y. Mo, Y. Guo, Automatic brain tumor detection and segmentation using u-net based fully convolutional networks, in Medical Image Understanding and Analysis, ed. by M. Valdés-Hernández, V. González-Castro (Springer International Publishing, Cham, 2017), pp. 506–517

    Google Scholar 

  18. S. Dube, S. El-Saden, T.F. Cloughesy, U. Sinha, Content based image retrieval for MR image studies of brain tumors, in 2006 International Conference of the IEEE Engineering in Medicine and Biology Society (2006), pp. 3337–3340. https://doi.org/10.1109/IEMBS.2006.260262

  19. C. Dupont, N. Betrouni, N. Reyns, M. Vermandel, On image segmentation methods applied to glioblastoma: state of art and new trends. IRBM 37(3), 131–143 (2016). https://doi.org/10.1016/j.irbm.2015.12.004. http://www.sciencedirect.com/science/article/pii/S195903181500144X

  20. P. Dvorak, B. Menze, Structured prediction with convolutional neural networks for multimodal brain tumor segmentation, in Proceeding of the Multimodal Brain Tumor Image Segmentation Challenge (2015), pp. 13–24

    Google Scholar 

  21. B. Ellingson, A. Lai, R. Harris, J. Selfridge, W. Yong, K. Das, W. Pope, P. Nghiemphu, H. Vinters, L. Liau et al., Probabilistic radiographic atlas of glioblastoma phenotypes. Am. J. Neuroradiol. 34(3), 533–540 (2013)

    Google Scholar 

  22. B.M. Ellingson, M. Bendszus, J. Boxerman, D. Barboriak, B.J. Erickson, M. Smits, S.J. Nelson, E. Gerstner, B. Alexander, G. Goldmacher et al., Consensus recommendations for a standardized brain tumor imaging protocol in clinical trials. Neuro-oncology 17(9), 1188–1198 (2015)

    Google Scholar 

  23. C. Fennema-Notestine, I.B. Ozyurt, C.P. Clark, S. Morris, A. Bischoff-Grethe, M.W. Bondi, T.L. Jernigan, B. Fischl, F. Segonne, D.W. Shattuck et al., Quantitative evaluation of automated skull-stripping methods applied to contemporary and legacy images: effects of diagnosis, bias correction, and slice location. Hum. Brain Mapp. 27(2), 99–113 (2006)

    Google Scholar 

  24. A. Gelb, A hybrid approach to spectral reconstruction of piecewise smooth functions. J. Sci. Comput. 15(3), 293–322 (2000)

    MathSciNet  MATH  Google Scholar 

  25. O. Gevaert, L. Mitchell, A. Achrol et al., Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features. Radiology 273(1), 168–174 (2014)

    Google Scholar 

  26. E. Giacomello, D. Loiacono, L. Mainardi, Brain MRI tumor segmentation with adversarial networks (2019)

    Google Scholar 

  27. R.J. Gillies, P.E. Kinahan, H. Hricak, Radiomics: images are more than pictures, they are data. Radiology 278(2), 563–577 (2016)

    Google Scholar 

  28. S. Grivalsky, M. Tamajka, W. Benesova, Segmentation of gliomas in magnetic resonance images using recurrent neural networks, in 2019 42nd International Conference on Telecommunications and Signal Processing (TSP) (2019), pp. 539–542. https://doi.org/10.1109/TSP.2019.8769056

  29. H. Gudbjartsson, S. Patz, The Rician distribution of noisy MRI data. Magn. Reson. Med. 34(6), 910–914 (1995)

    Google Scholar 

  30. D.A. Gutman, L.A. Cooper, S.N. Hwang, C.A. Holder, J. Gao, T.D. Aurora, W.D. Dunn Jr., L. Scarpace, T. Mikkelsen, R. Jain et al., Mr imaging predictors of molecular profile and survival: multi-institutional study of the tcga glioblastoma data set. Radiology 267(2), 560–569 (2013)

    Google Scholar 

  31. M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio, C. Pal, P.M. Jodoin, H. Larochelle, Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017). https://doi.org/10.1016/j.media.2016.05.004

    Article  Google Scholar 

  32. M. Havaei, N. Guizard, H. Larochelle, P.M. Jodoin, Deep Learning Trends for Focal Brain Pathology Segmentation in MRI (Springer International Publishing, Cham, 2016), pp. 125–148. https://doi.org/10.1007/978-3-319-50478-0_6

    Book  Google Scholar 

  33. M. Huang, W. Yang, Y. Wu, J. Jiang, Y. Gao, Y. Chen, Q. Feng, W. Chen, Z. Lu, Content-based image retrieval using spatial layout information in brain tumor t1-weighted contrast-enhanced MR images. PloS one 9(7), e102754 (2014)

    Google Scholar 

  34. J.E. Iglesias, C.Y. Liu, P.M. Thompson, Z. Tu, Robust brain extraction across datasets and comparison with publicly available methods. IEEE Trans. Med. Imag. 30(9), 1617–1634 (2011)

    Google Scholar 

  35. A. Işln, C. Direkoğlu, M.Şah, Review of MRI-based brain tumor image segmentation using deep learning methods. Procedia Comput. Sci. 102, 317–324 (2016), in 12th International Conference on Application of Fuzzy Systems and Soft Computing, ICAFS, 29-30 Aug 2016 (Austria, Vienna, 2016). https://doi.org/10.1016/j.procs.2016.09.407. URL http://www.sciencedirect.com/science/article/pii/S187705091632587X

  36. F. Isensee, P. Kickingereder, W. Wick, M. Bendszus, K.H. Maier-Hein, Brain tumor segmentation and radiomics survival prediction: contribution to the brats 2017 challenge, in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, ed. by A. Crimi, S. Bakas, H. Kuijf, B. Menze, M. Reyes (Springer International Publishing, Cham, 2018), pp. 287–297

    Google Scholar 

  37. Jain, V., Seung, S.: Natural image denoising with convolutional networks, in Advances in neural information processing systems (2009), pp. 769–776

    Google Scholar 

  38. J.E. Eckel-Passow, D.H. Lachance, A.M. Molinaro, K.M. Walsh, P.A. Decker, H. Sicotte, M. Pekmezci, T. Rice, M.L. Kosel, I.V. Smirnov, G. Sarkar, Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. New Engl. J. Med. 372(26), 2499–508 (2015)

    Google Scholar 

  39. L. Jin, L. Min, J. Wang, F. Wu, T. Liu, Y. Pan, A survey of MRI-based brain tumor segmentation methods. Tsinghua Sci. Technol. 19(6), 578–595 (2014). https://doi.org/10.1109/TST.2014.6961028

    Article  MathSciNet  Google Scholar 

  40. K. Kamnitsas, E. Ferrante, S. Parisot, C. Ledig, A.V. Nori, A. Criminisi, D. Rueckert, B. Glockern, Deepmedic for brain tumor segmentation, in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, ed. by A. Crimi, B. Menze, O. Maier, M. Reyes, S. Winzeck, H. Handels (Springer International Publishing, Cham, 2016), pp. 138–149

    Google Scholar 

  41. K. Kamnitsas, C. Ledig, V.F. Newcombe, J.P. Simpson, A.D. Kane, D.K. Menon, D. Rueckert, B. Glocker, Efficient multi-scale 3d CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Google Scholar 

  42. P.Y. Kao, F. Shailja, J. Jiang, A. Zhang, A. Khan, J. Chen, B. Manjunath, Improving patch-based convolutional neural networks for mri brain tumor segmentation by leveraging location information. Front. Neurosci. 13, 1449 (2020). https://doi.org/10.3389/fnins.2019.01449

    Article  Google Scholar 

  43. B. Kayalibay, G. Jensen, P. van der Smagt, CNN-based Segmentation of Medical Imaging Data. ArXiv abs/1701.03056 (2017)

    Google Scholar 

  44. P. Kickingereder, D. Bonekamp, M. Nowosielski et al., Radiogenomics of glioblastoma: machine learning-based classification of molecular characteristics by using multiparametric and multiregional mr imaging features. Radiology 281(3), 907–919 (2016)

    Google Scholar 

  45. J. Kleesiek, G. Urban, A. Hubert, D. Schwarz, K. Maier-Hein, M. Bendszus, A. Biller, Deep MRI brain extraction: a 3d convolutional neural network for skull stripping. NeuroImage 129, 460–469 (2016). https://doi.org/10.1016/j.neuroimage.2016.01.024. http://www.sciencedirect.com/science/article/pii/S1053811916000306

  46. A. Klein, J. Andersson, B.A. Ardekani, J. Ashburner, B. Avants, M.C. Chiang, G.E. Christensen, D.L. Collins, J. Gee, P. Hellier et al., Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 46(3), 786–802 (2009)

    Google Scholar 

  47. P. Korfiatis, B. Erickson, Deep learning can see the unseeable: predicting molecular markers from mri of brain gliomas. Clin. Radiol. 74(1), 367–373 (2019)

    Google Scholar 

  48. P. Korfiatis, T. Kline, B. Erickson, Automated segmentation of hyperintense regions in flair mri using deep learning. Tomogr. J. Imag. Res. 2, 334–340 (2016). https://doi.org/10.18383/j.tom.2016.00166

    Article  Google Scholar 

  49. A. Kumar, J. Kim, T.W. Cai, M.J. Fulham, D.D. Feng, Content-based medical image retrieval: a survey of applications to multidimensional and multimodality data. J. Digit. Imag. 26, 1025–1039 (2013)

    Google Scholar 

  50. J. Lao, Y. Chen, Z.C. Li, Q. Li, J. Zhang, J. Liu, G. Zhai, A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci. Rep. 7(1), 1–8 (2017)

    Google Scholar 

  51. G. Latif, D. Iskandar, J. Alghazo, M. Butt, A.H. Khan, Deep CNN based MR image denoising for tumor segmentation using watershed transform. Int. J. Eng. Technol. 7(2.3), 37–42 (2018)

    Google Scholar 

  52. H. Li, Y. Fan, Non-rigid image registration using self-supervised fully convolutional networks without training data, in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (2018), pp. 1075–1078. https://doi.org/10.1109/ISBI.2018.8363757

  53. Z. Li, Y. Wang, J. Yu, Y. Guo, W. Cao, Deep learning based radiomics (dlr) and its usage in noninvasive idh1 prediction for low grade glioma. Sci. Rep. 7(1), 1–11 (2017)

    Google Scholar 

  54. J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015), pp. 3431–3440. https://doi.org/10.1109/CVPR.2015.7298965

  55. D. Louis, A. Perry, G. Reifenberger et al., The 2016 world health organization classification of tumours of the central nervous system: a summary. Acta Neuropathol. 131, 803–820 (2016)

    Google Scholar 

  56. S.M. Lundberg, S.I. Lee, A unified approach to interpreting model predictions, in Advances in Neural Information Processing Systems (2017), pp. 4765–4774

    Google Scholar 

  57. A. Mahajan, A. Moiyadi, R. Jalali, E. Sridhar, Radiogenomics of glioblastoma: a window into its imaging and molecular variability. Cancer Imag. 15(1), P14 (2015)

    Google Scholar 

  58. M.A. Mazurowski, Radiogenomics: what it is and why it is important. J. Am. Coll. Radiol. 12(8), 862–866 (2015)

    Google Scholar 

  59. R. McKinley, R. Meier, R. Wiest, Ensembles of densely-connected cnns with label-uncertainty for brain tumor segmentation, in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, ed. by A. Crimi, S. Bakas, H. Kuijf, F. Keyvan, M. Reyes, T. van Walsum (Springer International Publishing, Cham, 2019), pp. 456–465

    Google Scholar 

  60. F. Milletari, S.A. Ahmadi, C. Kroll, A. Plate, V. Rozanski, J. Maiostre, J. Levin, O. Dietrich, B. Ertl-Wagner, K. Bötzel et al., Hough-CNN: deep learning for segmentation of deep brain regions in MRI and ultrasound. Comput. Vis. Image Underst. 164, 92–102 (2017)

    Google Scholar 

  61. J. Moustakas, K. Marias, S. Dimitriadis, S.C. Orphanoudakis, A two-level CBIR platform with application to brain MRI retrieval, in 2005 IEEE International Conference on Multimedia and Expo (2005), pp. 1278–1281

    Google Scholar 

  62. M.J. Muckley, B. des-Aron, A. Papaioannou, G. Lemberskiy, E. Solomon, Y.W. Lui, D.K. Sodickson, E. Fieremans, D.S. Novikov, F. Knoll, Training a Neural Network for Gibbs and Noise Removal in Diffusion MRI (2019)

    Google Scholar 

  63. A. Myronenko, 3D MRI brain tumor segmentation using autoencoder regularization, in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, ed. by A. Crimi, S. Bakas, H. Kuijf, F. Keyvan, M. Reyes, T. van Walsum (Springer International Publishing, Cham, 2019), pp. 311–320

    Google Scholar 

  64. K.M. Naeini, W.B. Pope, T.F. Cloughesy, R.J. Harris, A. Lai, A. Eskin, R. Chowdhury, H.S. Phillips, P.L. Nghiemphu, Y. Behbahanian et al., Identifying the mesenchymal molecular subtype of glioblastoma using quantitative volumetric analysis of anatomic magnetic resonance images. Neuro-oncology 15(5), 626–634 (2013)

    Google Scholar 

  65. J. Nalepa, M. Marcinkiewicz, M. Kawulok, Data augmentation for brain-tumor segmentation: a review. Front. Comput. Neurosci. 13, 83 (2019)

    Google Scholar 

  66. C.G.A.R. Network, Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. New Engl. J. Med. 372(26), 2481–2498 (2015)

    Google Scholar 

  67. S. Pereira, A. Pinto, V. Alves, C.A. Silva, Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imag. 35(5), 1240–1251 (2016)

    Google Scholar 

  68. M. Pisov, G. Makarchuk, V. Kostjuchenko, A. Dalechina, A. Golanov, M. Belyaev, Brain Tumor Image Retrieval via Multitask Learning (2018). ArXiv arXiv:1810.09369

  69. R. Pizarro, H.E. Assemlal, D.D. Nigris, C. Elliott, S. Antel, D.L. Arnold, A. Shmuel, Using deep learning algorithms to automatically identify the brain MRI contrast: Implications for managing large databases. Neuroinformatics 17(1), 115–30 (2018). https://doi.org/10.1007/s12021-018-9387-8

    Article  Google Scholar 

  70. W. Pope, L. Mirsadraei, A. Lai, A. Eskin, J. Qiao, H. Kim, B. Ellingson, P. Nghiemphu, S. Kharbanda, R. Soriano et al., Differential gene expression in glioblastoma defined by adc histogram analysis: relationship to extracellular matrix molecules and survival. Am. J. Neuroradiol. 33(6), 1059–1064 (2012)

    Google Scholar 

  71. W.B. Pope, Genomics of brain tumor imaging. Neuroimaging Clin. 25(1), 105–119 (2015)

    Google Scholar 

  72. W.B. Pope, J.H. Chen, J. Dong, M.R. Carlson, A. Perlina, T.F. Cloughesy, L.M. Liau, P.S. Mischel, P. Nghiemphu, A. Lai et al., Relationship between gene expression and enhancement in glioblastoma multiforme: exploratory dna microarray analysis. Radiology 249(1), 268–277 (2008)

    Google Scholar 

  73. C. Qin, J. Schlemper, J. Caballero, A.N. Price, J.V. Hajnal, D. Rueckert, Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imag. 38(1), 280–290 (2018)

    Google Scholar 

  74. S. Rathore, H. Akbari, J. Doshi, G. Shukla, M. Rozycki, M. Bilello, R.A. Lustig, C.A. Davatzikos, Radiomic signature of infiltration in peritumoral edema predicts subsequent recurrence in glioblastoma: implications for personalized radiotherapy planning. J. Med. Imag. 5(2), 021219 (2018)

    Google Scholar 

  75. S. Rathore, M.A. Iftikhar, Z. Mourelatos, Prediction of Overall Survival and Molecular Markers in Gliomas via Analysis of Digital Pathology Images using Deep Learning (2019). arXiv preprint arXiv:1909.09124

  76. M.T. Ribeiro, S. Singh, C. Guestrin, “Why should i trust you?” explaining the predictions of any classifier, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016), pp. 1135–1144

    Google Scholar 

  77. B. Roberts, M. Wan, S.P. Kelly, J.J. Healy, Quantitative comparison of Gegenbauer, filtered Fourier, and Fourier reconstruction for MRI, in Multimodal Biomedical Imaging XV, vol. 11232 (International Society for Optics and Photonics, 2020), p. 112320L

    Google Scholar 

  78. M. Simonovsky, B. Gutiérrez-Becker, D. Mateus, N. Navab, N. Komodakis, A deep metric for multimodal registration, in MICCAI (2016)

    Google Scholar 

  79. K. Simonyan, A. Vedaldi, A. Zisserman, Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps (2013). arXiv preprint arXiv:1312.6034

  80. M. Smith, S. Nichols, R. Henkelman, M. Wood, Application of autoregressive modelling in magnetic resonance imaging to remove noise and truncation artifacts. Magn. Reson. Imag. 4(3), 257–261 (1986)

    Google Scholar 

  81. B. Stefan, W. Roland, N. Lutz-P, R. Mauricio, A survey of MRI-based medical image analysis for brain tumor studies. Phys. Med. Biol. 58, R97–R129 (2013). https://doi.org/10.1088/0031-9155/58/13/R97

    Article  Google Scholar 

  82. M.F. Stollenga, W. Byeon, M. Liwicki, J. Schmidhuber, Parallel multi-dimensional lstm, with application to fast biomedical volumetric image segmentation, inProceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2, NIPS’15 (MIT Press, Cambridge, MA, USA, 2015), pp. 2998–3006

    Google Scholar 

  83. Z.N.K. Swati, Q. Zhao, M. Kabir, F. Ali, Z. Ali, S. Ahmed, J. Lu, Content-based brain tumor retrieval for MR images using transfer learning. IEEE Access 7, 17809–17822 (2019)

    Google Scholar 

  84. D. Tamada, Review: Noise and Artifact Reduction for MRI Using Deep Learning (2020)

    Google Scholar 

  85. Q. Tian, L.F. Yan, X. Zhang, X. Zhang, Y.C. Hu, Y. Han, Z.C. Liu, H.Y. Nan, Q. Sun, Y.Z. Sun et al., Radiomics strategy for glioma grading using texture features from multiparametric MRI. J. Magn. Reson. Imag. 48(6), 1518–1528 (2018)

    Google Scholar 

  86. G. Urban, M. Bendszus, F.A. Hamprecht, J. Kleesiek, Multi-modal brain tumor segmentation using deep convolutional neuralnetworks, in MICCAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, winningcontribution (2014), pp. 31–35

    Google Scholar 

  87. A. Varghese, K. Vaidhya, S. Thirunavukkarasu, C. Kesavdas, G. Krishnamurthi, Semisupervised learning using denoising autoencoders for brain lesion detection and segmentation. J. Med. Imag. 4, 041311 (2017)

    Google Scholar 

  88. A.V. Vasilakos, Y. Tang, Y. Yao et al., Neural networks for computer-aided diagnosis in medicine: a review. Neurocomputing 216, 700–708 (2016)

    Google Scholar 

  89. U. Vovk, F. Pernus, B. Likar, A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans. Med. Imag. 26(3), 405–421 (2007)

    Google Scholar 

  90. Y. Wang, Y. Song, H. Xie, W. Li, B. Hu, G. Yang, Reduction of Gibbs artifacts in magnetic resonance imaging based on convolutional neural network, in 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) (IEEE, 2017), pp. 1–5

    Google Scholar 

  91. M. Weller, W. Wick, K. Aldape, M. Brada, M. Berger, S.M. Pfister, R. Nishikawa, M. Rosenthal, P.Y. Wen, R. Stupp et al., Glioma. Nat. Rev. Dis. Primers 1(1), 1–18 (2015)

    Google Scholar 

  92. P.Y. Wen, J.T. Huse, 2016 world health organization classification of central nervous system tumors. Continuum Lifelong Learn. Neurol. 23(6), 1531–1547 (2017)

    Google Scholar 

  93. G. Wu, M. Kim, Q. Wang, Y. Gao, S. Liao, D. Shen, Unsupervised Deep Feature Learning for Deformable Registration of MR Brain Images (2013), pp. 649–656. https://doi.org/10.1007/978-3-642-40763-5_80

  94. G. Wu, M. Kim, Q. Wang, B.C. Munsell, D. Shen, Scalable high-performance image registration framework by unsupervised deep feature representations learning. IEEE Trans. Biomed. Eng. 63(7), 1505–1516 (2016). https://doi.org/10.1109/TBME.2015.2496253

    Article  Google Scholar 

  95. Z. Xiao, R. Huang, Y. Ding, T., Lan, R. Dong, Z. Qin, X. Zhang, W. Wang, A deep learning-based segmentation method for brain tumor in MR images, in 2016 IEEE 6th International Conference on Computational Advances in Bio and Medical Sciences (ICCABS) (2016), pp. 1–6. https://doi.org/10.1109/ICCABS.2016.7802771

  96. K. Xie, Y. Wen, Lstm-ma: a lstm method with multi-modality and adjacency constraint for brain image segmentation, in 2019 IEEE International Conference on Image Processing (ICIP) (2019), pp. 240–244. https://doi.org/10.1109/ICIP.2019.8802959

  97. Y. Xue, T. Xu, H. Zhang, R. Long, X. Huang, Segan: Adversarial network with multi-scale \(l_1\) loss for medical image segmentation. Neuroinformatics 16, 383–392 (2017). https://doi.org/10.1007/s12021-018-9377-x

    Article  Google Scholar 

  98. H. Yan, J. Mao, Data truncation artifact reduction in mr imaging using a multilayer neural network. IEEE Trans. Med. Imag. 12(1), 73–77 (1993)

    Google Scholar 

  99. X. Yang, R. Kwitt, M. Niethammer, Fast Predictive Image Registration (2016), pp. 48–57. https://doi.org/10.1007/978-3-319-46976-8_6

  100. Q. Zhang, G. Ruan, W. Yang, Y. Liu, K. Zhao, Q. Feng, W. Chen, E.X. Wu, Y. Feng, MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks. Magn. Reson. Med. 82(6), 2133–2145 (2019)

    Google Scholar 

  101. L. Zhao, K. Jia, Deep feature learning with discrimination mechanism for brain tumor segmentation and diagnosis, in 2015 International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP) (2015), pp. 306–309. https://doi.org/10.1109/IIH-MSP.2015.41

  102. X. Zhao, Y. Wu, G. Song, Z. Li, Y. Zhang, Y. Fan, A deep learning model integrating fcnns and crfs for brain tumor segmentation. Med. Image Anal. 43, 98–111 (2018)

    Google Scholar 

  103. X. Zhao, H. Zhang, Y. Zhou, W. Bian, T. Zhang, X. Zou, Gibbs-ringing artifact suppression with knowledge transfer from natural images to MR images, in Multimedia Tools and Applications (2019), pp. 1–23

    Google Scholar 

  104. D. Zikic, Y. Ioannou, M. Brown, A. Criminisi, Segmentation of Brain Tumor Tissues with Convolutional Neural Networks (2014)

    Google Scholar 

  105. P.O. Zinn, B. Majadan, P. Sathyan, S.K. Singh, S. Majumder, F.A. Jolesz, R.R. Colen, Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PloS One 6(10), e25451 (2011)

    Google Scholar 

Download references

Acknowledgements

All three authors would like to acknowledge the support of the EU COST Action 18206.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Healy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Healy, J.J., Curran, K.M., Serifovic Trbalic, A. (2021). Deep Learning for Magnetic Resonance Images of Gliomas. In: Kose, U., Alzubi, J. (eds) Deep Learning for Cancer Diagnosis. Studies in Computational Intelligence, vol 908. Springer, Singapore. https://doi.org/10.1007/978-981-15-6321-8_16

Download citation

Publish with us

Policies and ethics