Skip to main content

Deep Learning for Brain Tumor Segmentation

  • Chapter
  • First Online:
Deep Learning for Cancer Diagnosis

Part of the book series: Studies in Computational Intelligence ((SCI,volume 908))

Abstract

Brain tumors are considered to be one of the most lethal types of tumor. Accurate segmentation of brain MRI is an important task for the analysis of neurological diseases. The mortality rate of brain tumors is increasing according to World Health Organization. Detection at early stages of brain tumors can increase the expectation of the patients’ survival. Concerning artificial intelligence approaches for clinical diagnosis of brain tumors, there is an increasing interest in segmentation approaches based on deep learning because of its ability of self-learning over large amounts of data. Deep learning is nowadays a very promising approach to develop effective solution for clinical diagnosis. This chapter provides at first some basic concepts and techniques behind brain tumor segmentation. Then the imaging techniques used for brain tumor visualization are described. Later on, the dataset and segmentation methods are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Amin, M. Sharif, M. Raza, M. Yasmin, Detection of brain tumor based on features fusion and machine learning. J. Ambient Intell. Hum. Comput. 1–17 (2018)

    Google Scholar 

  2. J. Amin, M. Sharif, M. Raza, T. Saba, M.A. Anjum, Brain tumor detection using statistical and machine learning method. Comput. Methods Progr. Biomed. 177, 69–79 (2019)

    Google Scholar 

  3. J. Liu, Y. Pan, M. Li, L. Ziyue Chen, C.L. Tang, J. Wang, Applications of deep learning to MRI images: a survey. Big Data Min. Anal. 1(1), 1–18 (2018)

    Article  Google Scholar 

  4. M. Sharif, M.A. Khan, Z. Iqbal, M.F. Azam, M.I. Ullah Lali, M.Y. Javed, Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection. Comput. Electron. Agric. 150, 220–234 (2018)

    Google Scholar 

  5. R.J. Martis, V.P. Gurupur, H. Lin, A. Islam, S.L. Fernandes, Recent advances in big data analytics. Internet Things Mach. Learn. (2018)

    Google Scholar 

  6. S.M. Naqi, M. Sharif, M. Yasmin, Multistage segmentation model and SVM-ensemble for precise lung nodule detection. Int. J. Comput. Assist. Radiol. Surg. 13(7), 1083–1095 (2018)

    Google Scholar 

  7. M. Sharif, M.A. Khan, M. Faisal, M. Yasmin, S.L. Fernandes, A framework for offline signature verification system: best features selection approach. Pattern Recognit. Lett. (2018)

    Google Scholar 

  8. S. Masood, M. Sharif, A. Masood, M. Yasmin, M. Raza, A survey on medical image segmentation. Curr. Med. Imaging 11(1), 3–14 (2015)

    Article  Google Scholar 

  9. S. Masood, M. Sharif, M. Yasmin, M. Raza, S. Mohsin, Brain image compression: a brief survey. Res. J. Appl. Sci. Eng. Technol. 5(1), 49–59 (2013)

    Article  Google Scholar 

  10. G.J. Ansari, J.H. Shah, M. Yasmin, M. Sharif, S.L. Fernandes, A novel machine learning approach for scene text extraction. Future Gener. Comput. Syst. 87, 328–340 (2018)

    Google Scholar 

  11. M. Yasmin, M. Sharif, Sajjad Mohsin, Neural networks in medical imaging applications: a survey. World Appl. Sci. J. 22(1), 85–96 (2013)

    Google Scholar 

  12. M.A. Khan, T. Akram, M. Sharif, M.Y. Javed, N. Muhammad, M. Yasmin, An implementation of optimized framework for action classification using multilayers neural network on selected fused features. Pattern Anal. Appl. 22(4), 1377–1397 (2019)

    Google Scholar 

  13. M. Fayyaz, M. Yasmin, M. Sharif, J.H. Shah, M. Raza, T. Iqbal, Person re-identification with features-based clustering and deep features. Neural Comput. Appl. 1–22 (2019)

    Google Scholar 

  14. M. Sharif, U. Tanvir, E.U. Munir, M.A. Khan, M. Yasmin, Brain tumor segmentation and classification by improved binomial thresholding and multi-features selection. J. Ambient Intell. Hum. Comput. 1–20 (2018)

    Google Scholar 

  15. Brain tumor basics

    Google Scholar 

  16. American Cancer Society website

    Google Scholar 

  17. Brain tumor diagnosis

    Google Scholar 

  18. V. Rajinikanth, S.C. Satapathy, S.L. Fernandes, S. Nachiappan, Entropy based segmentation of tumor from brain MR images—a study with teaching learning based optimization. Pattern Recognit. Lett. 94, 87–95 (2017)

    Google Scholar 

  19. L.M. DeAngelis, Brain tumors. N. Engl. J. Med. 344(2), 114–123 (2001)

    Google Scholar 

  20. U.R. Acharya, S.L. Fernandes, J. En WeiKoh, E.J. Ciaccio, M.K. Mohd Fabell, U.J. Tanik, V. Rajinikanth, C.H. Yeong, Automated detection of Alzheimer’ disease using brain MRI images—a study with various feature extraction techniques. J. Med. Syst. 43(9), 302 (2019)

    Google Scholar 

  21. S.L. Fernandes, U.J. Tanik, V. Rajinikanth, K.A. Karthik, A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians. Neural Comput. Appl. 1–12 (2019)

    Google Scholar 

  22. M.L. Rhodes, J.F. Quinn, J. Silvester, Locally optimal run-length compression applied to CT images. IEEE Trans. Med. Imaging 4(2), 84–90 (1985)

    Google Scholar 

  23. H. Lee, Y. Kim, A.H. Rowberg, E.A. Riskin, 3-d image compression for X-ray CT images using displacement estimation, in 1991 Proceedings. Data Compression Conference (IEEE, 1991), p. 453

    Google Scholar 

  24. M. Hashimoto, K. Matsuo, A. Koike, H. Hayashi, T. Shimono, Ct image compression with level of interest, in 2004 International Conference on Image Processing, 2004. ICIP’04, vol. 5 (IEEE, 2004), pp. 3185–3188

    Google Scholar 

  25. L. Guoli, Z. Jian, W. Qunjing, H. Cungang, D. Na, L, Jianping, Application of region selective embedded zerotree wavelet coder in ct image compression, in 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference (IEEE, 2006), pp. 6591–6594

    Google Scholar 

  26. A. Signoroni, S. Masneri, A. Riccardi, I. Castiglioni, Enabling solutions for an efficient compression of pet-ct datasets, in 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC) (IEEE, 2009), pp. 2747–2751

    Google Scholar 

  27. J.L. Ong, A.-K. Seghouane, False positive reduction in ct colonography using spectral compression and curvature tensor smoothing of surface geometry, in 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (IEEE, 2009), pp. 89–92

    Google Scholar 

  28. J. Cinkler, X. Kong, N. Memon, Lossless and near-lossless compression of EEG signals, in Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No. 97CB36136), vol. 2 (IEEE, 1997), pp. 1432–1436

    Google Scholar 

  29. N. Memon, X. Kong, J. Cinkler, Context-based lossless and near-lossless compression of EEG signals. IEEE Trans. Inf. Technol. Biomed. 3(3), 231–238 (1999)

    Article  Google Scholar 

  30. S. Aviyente, Compressed sensing framework for EEG compression, in 2007 IEEE/SP 14th Workshop on Statistical Signal Processing (IEEE, 2007), pp. 181–184

    Google Scholar 

  31. G. Higgins, S. Faul, R.P. McEvoy, B. McGinley, M. Glavin, W.P. Marnane, E. Jones, EEG compression using jpeg2000: how much loss is too much?, in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology (IEEE, 2010), pp. 614–617

    Google Scholar 

  32. C. Cavaro-Ménard, A. Le Duff, P. Balzer, B. Denizot, O. Morel, P. Jallet, J.-J. Le Jeune, Quality assessment of compressed cardiac MRI. Effect of lossy compression on computerized physiological parameters, in Proceedings 10th International Conference on Image Analysis and Processing (IEEE, 1999), pp. 1034–1037

    Google Scholar 

  33. S. Raghavan, S. Chatterjee, M.B. Waldron, Image compression applied to MRI images, in Images of the Twenty-First Century. Proceedings of the Annual International Engineering in Medicine and Biology Society (IEEE, 1989), pp. 526–527

    Google Scholar 

  34. W. Badawy, M. Weeks, G. Zhang, M. Talley, M.A. Bayoumi, MRI data compression using a 3-d discrete wavelet transform. IEEE Eng. Med. Biol. Mag. 21(4), 95–103 (2002)

    Google Scholar 

  35. S.S. Gornale, V.T. Humbe, S.S. Jambhorkar, P. Yannawar, R.R. Manza, K.V. Kale, Multi-resolution system for MRI (magnetic resonance imaging) image compression: a heterogeneous wavelet filters bank approach, in Computer Graphics, Imaging and Visualisation (CGIV 2007) (IEEE, 2007), pp. 495–500

    Google Scholar 

  36. D.A. Karras, Compression of MRI images using the discrete wavelet transform and improved parameter free Bayesian restoration techniques, in 2009 IEEE International Workshop on Imaging Systems and Techniques (IEEE, 2009), pp. 173–178

    Google Scholar 

  37. W. Yodchanan, Lossless compression for 3-D MRI data using reversible KLT, in 2008 International Conference on Audio, Language and Image Processing (IEEE, 2008), pp. 1560–1564

    Google Scholar 

  38. A. Corvetto, A. Ruedin, D. Acevedo, Robust detection and lossless compression of the foreground in magnetic resonance images, in 2010 Data Compression Conference (IEEE, 2010), pp. 529–529

    Google Scholar 

  39. D. Dhouib, A. Nait-Ali, C. Olivier, M.S. Naceur, Comparison of wavelet based coders applied to 3D brain tumor MRI images, in 2009 6th International Multi-Conference on Systems, Signals and Devices (IEEE, 2009), pp. 1–6

    Google Scholar 

  40. B.H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, Y. Burren, N. Porz, J. Slotboom, R. Wiest, et al., The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Google Scholar 

  41. A.M. Mendrik, K.L. Vincken, H.J. Kuijf, M. Breeuwer, W.H. Bouvy, J. De Bresser, A. Alansary, M. De Bruijne, A. Carass, A. El-Baz, et al., MRBrainS challenge: online evaluation framework for brain image segmentation in 3T MRI scans. Comput. Intell. Neurosci. 2015 (2015)

    Google Scholar 

  42. I. Išgum, M.J.N.L. Benders, B. Avants, M.J. Cardoso, S.J. Counsell, E.F. Gomez, L. Gui, P.S. Hűppi, K.J. Kersbergen, A. Makropoulos, et al., Evaluation of automatic neonatal brain segmentation algorithms: the NeoBrainS12 challenge. Med. Image Anal. 20(1), 135–151 (2015)

    Google Scholar 

  43. L. Wang, D. Nie, G. Li, É. Puybareau, J. Dolz, Q. Zhang, F. Wang, J. Xia, W. Zhengwang, Jia-Wei Chen et al., Benchmark on automatic six-month-old infant brain segmentation algorithms: the iSeg-2017 challenge. IEEE Trans. Med. Imaging 38(9), 2219–2230 (2019)

    Article  Google Scholar 

  44. S. Pereira, A. Pinto, V. Alves, C.A. Silva, Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016)

    Google Scholar 

  45. S. Cui, L. Mao, J. Jiang, C. Liu, S. Xiong, Automatic semantic segmentation of brain gliomas from MRI images using a deep cascaded neural network. J. Healthc. Eng. 2018 (2018)

    Google Scholar 

  46. G. Wang, W. Li, S. Ourselin, T. Vercauteren, Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks, in International MICCAI Brainlesion Eorkshop (Springer, 2017), pp. 178–190

    Google Scholar 

  47. D. Nie, L. Wang, Y. Gao, D. Shen, Fully convolutional networks for multi-modality isointense infant brain image segmentation, in 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI) (IEEE, 2016), pp. 1342–1345

    Google Scholar 

  48. F. Isensee, P. Kickingereder, W. Wick, M. Bendszus, K.H. Maier-Hein, Brain tumor segmentation and radiomics survival prediction: contribution to the brats 2017 challenge, in International MICCAI Brainlesion Workshop (Springer, 2017), pp. 287–297

    Google Scholar 

  49. Y. Qin, K. Kamnitsas, S. Ancha, J. Nanavati, G. Cottrell, A. Criminisi, A. Nori, Autofocus layer for semantic segmentation, in International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, 2018), pp. 603–611

    Google Scholar 

  50. J. Dolz, K. Gopinath, J. Yuan, H. Lombaert, C. Desrosiers, I.B. Ayed, Hyperdense-net: a hyper-densely connected CNN for multi-modal image segmentation. IEEE Trans. Med. Imaging 38(5), 1116–1126 (2018)

    Google Scholar 

  51. K. Kamnitsas, C. Ledig, V.F.J. Newcombe, J.P. Simpson, A.D. Kane, D.K. Menon, D. Rueckert, B. Glocker, Efficient multi-scale 3d CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Google Scholar 

  52. P. Mlynarski, H. Delingette, A. Criminisi, N. Ayache, 3d convolutional neural networks for tumor segmentation using long-range 2d context. Comput. Med. Imaging Graph. 73, 60–72 (2019)

    Article  Google Scholar 

  53. X. Zhao, W. Yihong, G. Song, Z. Li, Y. Zhang, Y. Fan, A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med. Image Anal. 43, 98–111 (2018)

    Article  Google Scholar 

  54. K. Kamnitsas, W. Bai, E. Ferrante, S. McDonagh, M. Sinclair, N. Pawlowski, M. Rajchl, M. Lee, B. Kainz, D. Rueckert, et al., Ensembles of multiple models and architectures for robust brain tumour segmentation, in International MICCAI Brainlesion Workshop (Springer, 2017), pp. 450–462

    Google Scholar 

  55. M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio, C. Pal, P.-M. Jodoin, H. Larochelle, Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)

    Article  Google Scholar 

  56. L. Perez, J. Wang, The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621 (2017)

    Google Scholar 

  57. S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, R.T. Shinohara, C. Berger, S.M. Ha, M. Rozycki, et al., Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018)

    Google Scholar 

  58. T. Saba, M.A. Khan, A. Rehman, S.L. Marie-Sainte, Region extraction and classification of skin cancer: a heterogeneous framework of deep CNN features fusion and reduction. J. Med. Syst. 43(9), 289 (2019)

    Google Scholar 

  59. P. Afshar, K.N. Plataniotis, A. Mohammadi, Capsule networks for brain tumor classification based on MRI images and coarse tumor boundaries, in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, 2019), pp. 1368–1372

    Google Scholar 

  60. D. Nie, H. Zhang, E. Adeli, L. Liu, D. Shen, 3d deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients, in International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, 2016), pp. 212–220

    Google Scholar 

  61. Y. Xu, Z. Jia, L.-B. Wang, Y. Ai, F. Zhang, M. Lai, I. Eric, C. Chang, Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features. BMC Bioinform. 18(1), 281 (2017)

    Google Scholar 

  62. H.H. Sultan, N.M. Salem, W. Al-Atabany, Multi-classification of brain tumor images using deep neural networks. IEEE Access 7, 69215–69225 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khushboo Munir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Munir, K., Frezza, F., Rizzi, A. (2021). Deep Learning for Brain Tumor Segmentation. In: Kose, U., Alzubi, J. (eds) Deep Learning for Cancer Diagnosis. Studies in Computational Intelligence, vol 908. Springer, Singapore. https://doi.org/10.1007/978-981-15-6321-8_11

Download citation

Publish with us

Policies and ethics