Skip to main content

Fusion of Deep Learning and Image Processing Techniques for Breast Cancer Diagnosis

  • Chapter
  • First Online:
Deep Learning for Cancer Diagnosis

Abstract

Deep learning has the capacity to gain great accuracy of diagnosing of numerous types of cancers, along with lung, cervical, colon, and breast cancer. It builds an efficient algorithm based on multiple processing (hidden) layers of neurons. Manual assessment of Cancer using Medical Image (CT images) requires expensive human labors and can easily cause the misdiagnose of any type of cancer. The Researcher focus on automatically diagnosing cancer by using the deep learning technique. Breast cancer is a particularly common sickness among women and maximum associated cause of female mortality. The survival rate of breast cancer patients can be expanded with the aid of powerful treatment, which can initiate upon early prognosis of the disease. This chapter introduces Deep Learning under medical image processing to analysis and diagnosis of Cancer (Ehteshami Bejnordi et al., in Deep learning-based assessment of tumor-associated stroma for diagnosing breast cancer in histopathology images, pp. 929–932, 2017 [1]). Identification of most cancer might facilitate in sparing a massive wide variety of lives over the globe community and deep neural networks may be correctly used for intelligent image analysis. The essential structure of how this deep learning takes a shot at medical image processing (Litjens et al. in A survey on deep learning in medical image analysis, 2017, [2]; Rezaeilouyeh et al. in J Med Imaging 3(4):044501, 2016 [3]) is furnished in this research, i.e., pre-processing, image segmentation and post-processing. The following piece of this part depicts the rudiments of the field of disease conclusion, which incorporates steps of malignant growth determination followed by the regular arrangement strategies utilized by specialists, giving a verifiable thought of disease grouping methods to the readers. Next an attempt has been made to classify the extracted features from mammograms as benign or malignant by using Convolutional neural network (CNN) (Cireşan in Mitosis detection in breast cancer histology images with deep neural networks. Springer, Berlin, pp. 411–418, 2013 [4]; LeCun et al. in International symposium on circuits and systems, pp. 253–256, 2010 [5]; Huynh et al. in J Med Imaging 3(3):034501, 2016 [6]) is applied to classify cancer using optimal features obtained from cell segmented images. Performance improvised of the approaches by varying various parameters is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Ehteshami Bejnordi, J. Lin, B. Glass, M. Mullooly, G.L. Gierach, M.E. Sherman, N. Karssemeijer, J. van der Laak, A.H. Beck, Deep learning-based assessment of tumor-associated stroma for diagnosing breast cancer in histopathology images (2017), pp. 929–932

    Google Scholar 

  2. G.J.S. Litjens, T. Kooi, B.E. Bejnordi, A.A.A. Setio, F. Ciompi, M. Ghafoorian, J.A.W.M. van der Laak, B. van Ginneken, C.I. Sánchez, A survey on deep learning in medical image analysis. CoRR, abs/1702.05747 (2017)

    Google Scholar 

  3. H. Rezaeilouyeh, A. Mollahosseini, M.H. Mahoor, Microscopic medical image classification framework via deep learning and shearlet transform. J. Med. Imaging 3(4), 044501 (2016)

    Article  Google Scholar 

  4. D.C. Cireşan, A. Giusti, L.M. Gambardella, J. Schmidhuber, Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks (Springer, Berlin, 2013), pp. 411–418. ISBN 978-3-642-40763-5

    Google Scholar 

  5. Y. LeCun, K. Kavukcuoglu, C. Farabet, Convolutional networks and applications in vision, in International Symposium on Circuits and Systems (2010), pp. 253–256

    Google Scholar 

  6. B.Q. Huynh, H. Li, M.L. Giger, Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J. Med. Imaging 3(3), 034501 (2016)

    Article  Google Scholar 

  7. A.J. Mendez, P.G. Tahoces, M.J. Lado, M. Souto, J.J. Vidal, Computer-aided diagnosis: automatic detection of malignant masses in digitized mammograms. Med. Phys. 25, 957–964 (1998)

    Article  Google Scholar 

  8. M. Kowal, P. Filipczuk, A. Obuchowicz, J. Korbicz, R. Monczak, Computer-aided diagnosis of breast cancer based on fine needle biopsy microscopic images. Comput. Biol. Med. 43(10), 1563–1572 (2013)

    Article  Google Scholar 

  9. J. Dheeba, N.A. Singh, S.T. Selvi, Computer-aided detection of breast cancer on mammograms: a swarm intelligence optimized wavelet neural network approach. J. Biomed. Inform. 49, 45–52 (2014). https://doi.org/10.1016/j.jbi.2014.01.010

    Article  Google Scholar 

  10. A.H. Fischer, K.A. Jacobson, J. Rose, R. Zeller, Hematoxylin and eosin staining of tissue and cell sections. In: Cold Spring Harbor Protocols (2008). https://doi.org/10.1101/pdb.prot4986

  11. A.S. Becker, M. Marcon, S. Ghafoor, M.C. Wurnig, T. Frauenfelder, A. Boss, Deep learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer. Invest. Radiol. (2017)

    Google Scholar 

  12. M. Heath, D. Kopans, R. Moore, P. Kegelmeyer Jr., The digital database for screening mammography. Br. J. Psychiatry 212–218 (2000). (Proceedings of the 5th International Workshop on Digital Mammography)

    Google Scholar 

  13. S.K. Pal, S.K. Lau, L. Kruper, U. Nwoye, C. Garberoglio, R.K. Gupta, B. Paz, V. Lalit, E. Guzman, A. Artinyan, G. Somlo, Papillary carcinoma of the breast: an overview. Breast Cancer Res. Treat. 122(3), 637–645 (2010). https://doi.org/10.1007/s10549-010-0961-5

  14. S. Doyle, S. Agner, A. Madabhushi, M. Feldman, J. Tomaszewski, Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features, in Proceedings of the 5th IEEE International Symposium on Biomedical Imageing (ISBI): From Nano to Macro (Paris, France), vol. 61 (IEEE, 2008), pp. 496–499. https://doi.org/10.1109/isbi.2008.4541041

  15. J.E. Joy, E.E. Penhoet, D.B. Petitti (eds.), Saving Women’s Lives: Strategies for Improving Breast Cancer Detection and Diagnosis (National Academies Press, Washington, D.C., 2005). ISBN: 978-0-309-09213-5

    Google Scholar 

  16. B.B. Lahiri, S. Bagavathiappan, T. Jayakumar, J. Philip, Medical applications of infrared thermography: a review. Infrared Phys. Technol. 55(4), 221–235 (2012)

    Article  Google Scholar 

  17. V.A.F. Alves, M. Bibbo, F.C.L. Schmitt, F. Milanezi, A. Longatto Filho, Comparison of manual and automated methods of liquid-based cytology: a morphologic study. Acta Cytol. 2(48), 187–193 (2004)

    Google Scholar 

  18. R.K. Gibb, M.G. Martens, The impact of liquid-based cytology in decreasing the incidence of cervical cancer. Rev. Obstet. Gynecol. 4, s2–s11 (2011)

    Google Scholar 

  19. D.B. Kopans, An open letter to panels that are deciding guidelines for breast cancer screening. Breast Cancer Res. Treat 151(1), 19–25 (2015) (Online). http://www.ncbi.nlm.nih.gov/pubmed/25868866

  20. K.I. Satoto, O.D. Nurhayati, R. Isnanto, Pattern recognition to detect breast cancer thermogram images based on fuzzy inference system method. Int. J. Comput. Sci. Technol. 2(3), 484–487 (2011)

    Google Scholar 

  21. W. Lotter, G. Sorensen, D. Cox, A multi-scale CNN and curriculum learning strategy for mammogram classification, in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support (2017)

    Google Scholar 

  22. N. Rahimi, The ubiquitin-proteasome system meets angiogenesis. Mol. Cancer Ther. 11(3), 538–548. https://doi.org/10.1158/1535-7163.mct-11-0555. http://mct.aacrjournals.org/content/11/3/538.full

  23. S.S. Brandt, G. Karemore, N. Karssemeijer, M. Nielsen, An anatomically oriented breast coordinate system for mammogram analysis. IEEE Trans. Med. Imaging 30(10), 1841–1851. https://doi.org/10.1109/tmi.2011.2155082

  24. M.U. Dalmış, G. Litjens, K. Holland, A. Setio, R. Mann, N. Karssemeijer, A. Gubern-Mrida, Using deep learning to segment breast and fibroglandular tissue in MRI volumes. Med. Phys. 44(2), 533–546 (2017)

    Article  Google Scholar 

  25. Cancer Research UK (CRUK). Diagram 3 of 3 showing stage 3C breast cancer CRUK 401. 2014. url: http://commons.wikimedia.org/wiki/File:Diagram_3_of_3_showing_stage_3C_breast_cancer_CRUK_401.svg#/media/File:Diagram_3_of_3_showing_stage_3C_breast_cancer_CRUK_401.svg

  26. National Cancer Institute (NCI), Male Breast Cancer Treatment (PDQ®) (2014). url: http://www.cancer.gov/cancertopics/pdq/treatment/malebreast/patient

  27. Breastcancer.org. Male Breast Cancer (2014). http://www.breastcancer.org/symptoms/types/male_bc

  28. A.-A. Nahid, K. Yinan, Histopathological breast-image classification using local and frequency domains by convolutional neural network. Information 19(9), 1–26. https://doi.org/10.3390/info9010019

  29. National Cancer Institute (NCI), SEER Cancer Statistics Factsheets: Breast Cancer (2014). http://seer.cancer.gov/statfacts/html/breast.html

  30. A. Janowczyk, A. Madabhushi, Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases. J. Pathol. Inform. 7 (2016)

    Google Scholar 

  31. S.W. Duffy, L. Tabar, H.H. Chen, M. Holmqvist, M.F. Yen, S. Abdsalah, B. Epstein, E. Frodis, E. Ljungberg, C. Hedborg-Melander, A. Sundbom, M. Tholin, M. Wiege, A. Akerlund, H.M. Wu, T.S. Tung, Y.H. Chiu, C.P. Chiu, C.C. Huang, R.A. Smith, M. Rosen, M. Stenbeck, L. Holmberg, The impact of organized mammography service screening on breast carcinoma mortality in seven Swedish counties. Cancer 95(3), 458–469 (2002)

    Article  Google Scholar 

  32. L. Tabár, T. Tot, P.B. Dean, Breast Cancer: The Art and Science of Early Detection with Mammography—Perception, Interpretation, Histopathologic Correlation (Tyeme Verlag, New York, 2004)

    Google Scholar 

  33. N. Bayramoglu, J. Kannala, J. Heikkilä, Deep learning for magnification independent breast cancer histopathology image classification, in 23rd International Conference on Pattern Recognition (Cancun, Mexico), vol. 1 (IEEE 2016), pp. 2440–2445. https://doi.org/10.1109/icpr.2016.7900002

  34. I. Domingues, J.S. Cardoso, Mass detection on mammogram images: a first assessment of deep learning techniques (2013)

    Google Scholar 

  35. S. Azizi, F. Imani, S. Ghavidel, A. Tahmasebi, J.T. Kwak, S. Xu, B. Turkbey, P. Choyke, P. Pinto, B. Wood et al., Detection of prostate cancer using temporal sequences of ultrasound data: a large clinical feasibility study. Int. J. Comput. Assist. Radiol. Surg. 35(4), 1–10 (2016)

    Google Scholar 

  36. J. Arevalo, F.A. González, R. Ramos-Pollán, J.L. Oliveira, M.A.G. Lopez, Representation learning for mammography mass lesion classification with convolutional neural networks. Comput. Methods Programs Biomed. 127, 248–257 (2016)

    Google Scholar 

  37. Z. Chen, A. Oliver, E. Denton, R. Zwiggelaar, Automated mammographic risk classification based on breast density estimation, in Pattern Recognition and Image Analysis (Madeira, Portugal), vol. 7887 (2013), pp. 237–244. https://doi.org/10.1007/978-3-642-38628-2_28

  38. P. Fonseca, J. Mendoza, J. Wainer, J. Ferrer, J. Pinto, J. Guerrero, B. Castaneda, Automatic breast density classification using a convolutional neural network architecture search procedure, in Proceedings of SPIE Medical Imaging 2015: Computer-Aided Diagnosis (Orlando, USA), vol. 9414. Society of Photo-Optical Instrumentation Engineers (SPIE) (2015). https://doi.org/10.1117/12.2081576. ISBN: 9781628415049

  39. S. Kothari et al., Pathology imaging informatics for quantitative analysis of whole-slide images. J. Am. Med. Inform. Assoc. 20(6), 1099–1108 (2013)

    Article  Google Scholar 

  40. I. Gardiner, U. Kuusk, B.B. Forster, A. Spielmann, Breast magnetic resonance imaging. BC Med. J. 47(10), 543–548 (2005)

    Google Scholar 

  41. P. Carmeliet, R.K. Jain, Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000)

    Article  Google Scholar 

  42. M.E. Sanders, J.F. Simpson, Breast pathology, in Proceedings of the 5th international, vol. 6 (Demos Medical, New York, 2014), pp. 212–218. ISBN: 978-1-936287-68-0

    Google Scholar 

  43. S.K. Apple, Sentinel lymph node in breast cancer: Review article from a pathologist’s point of view. J. Pathol. Transl. Med. 50(2), 83 (2016)

    Article  Google Scholar 

  44. Instituto Nacional do Câncer (INCA), Ministério da Saúde (MS). Diretrizes brasileiras para o rastreamento do câncer do colo do útero. Tech. rep. Rio de Janeiro: Instituto Nacional do Câncer (INCA) (2011)

    Google Scholar 

  45. N. Arora, D. Martins, D. Ruggerio, E. Tousimis, A.J. Swistel, M.P. Osborne, R.M. Simmons, Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer. Am. J. Surg. 196(4), 523–526 (2008)

    Article  Google Scholar 

  46. W.C. Amalu (ed.), Case Studies. Nov 2012. http://www.breastthermography.com/case_studies.htm

  47. Breastcancer.org. Biopsy (2012). http://www.breastcancer.org/symptoms/testing/types/biopsy

  48. Breastcancer.org. Types of Breast Cancer (2013). http://www.breastcancer.org/symptoms/types

  49. A. Bhardwaj, A. Tiwari, Breast cancer diagnosis using Genetically Optimized Neural Network model. Expert Syst. Appl. 42(10), 4611–4620. https://doi.org/10.1016/j.eswa.2015.01.065

  50. V. Ajantha Devi, Supervised learning approach to object identification and recognition. Int. J. Pure Appl. Math. 119(12), 15969–15976 (2018). ISSN: 1314-3395

    Google Scholar 

  51. B.W. Wei, Z. Han, X. He, Y. Yin, Deep learning model based breast cancer histopathological image classification, in Proceedings of the 2017 IEEE 2nd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA) (Chengdu, China) (IEEE, 2017), pp. 348–353. https://doi.org/10.1109/icccbda.2017.7951937

  52. J. Alzubi, A. Nayyar, A. Kumar, Machine learning from theory to algorithms: an overview. J. Phys. Conf. Ser. 1142(1). (IOP Publishing)

    Google Scholar 

  53. F. Saeed, A. Paul, P. Karthigaikumar, A. Nayyar, Convolutional neural network based early fire detection. Multimedia Tools Appl. 1–17. (Springer USA)

    Google Scholar 

  54. M.R.K. Mookiah, U.R. Acharya, E.Y.K. Ng, Data mining technique for breast cancer detection in thermograms using hybrid feature extraction strategy, Quant. InfraRed Thermography J. 9(2), 151–165. https://doi.org/10.1080/17686733.2012.738788

  55. N.H. Motlagh, M. Jannesary, H. Aboulkheyr, P. Khosravi, O. Elemento, M. Totonchi, I. Hajirasouliha, Breast Cancer Histopathological Image Classification: A Deep Learning Approach, in bioRxiv (2018). https://doi.org/10.1101/242818

  56. A.G. Taghian, B.L. Smith, J.K. Erban (eds.), Breast Cancer: a Multidisciplinary Approach to Diagnosis and Management. (Demos Medical, New York, 2010). ISBN: 978–1–933864–44–0

    Google Scholar 

  57. J. Schmidhuber, Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  58. A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, in Advances in Neural Information Processing Systems, vol. 25, ed. by F. Pereira, C.J.C. Burges, L. Bottou, K.Q. Weinberger (Curran Associates, Inc., 2012), pp. 1097–1105

    Google Scholar 

  59. D. Eigen, J.T. Rolfe, R. Fergus, Y. LeCun, Understanding deep architectures using a recursive convolutional network. CoRR, abs/1312.1847 (2013)

    Google Scholar 

  60. A.T. Azar, S.A. El-Said, Probabilistic neural network for breast cancer classification. Neural Comput. Appl. 23(6), 1737–1751 (2012)

    Article  Google Scholar 

  61. M.C. Araújo, R.C.F. Lima, R.M.C.R. de Souza, Interval symbolic feature extraction for thermography breast cancer detection. Expert Syst. Appl. 41(152014), 6728–6737. https://doi.org/10.1016/j.eswa.2014.04.027

  62. T. Kooi, G. Litjens, B. van Ginneken, A. Gubern-Mérida, C.I. Sánchez, R. Mann, A. den Heeten, N. Karssemeijer, Large scale deep learning for computer aided detection of mammographic lesions. Med. Image Anal. 35, 303–312 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Nayyar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ajantha Devi, V., Nayyar, A. (2021). Fusion of Deep Learning and Image Processing Techniques for Breast Cancer Diagnosis. In: Kose, U., Alzubi, J. (eds) Deep Learning for Cancer Diagnosis. Studies in Computational Intelligence, vol 908. Springer, Singapore. https://doi.org/10.1007/978-981-15-6321-8_1

Download citation

Publish with us

Policies and ethics