Skip to main content

Photonic Crystals for Biomolecule Sensing Applications

  • Chapter
  • First Online:
Nanophotonics in Biomedical Engineering
  • 660 Accesses

Abstract

Photonic crystal (PhC) sensors offer important advantages in molecular diagnostic applications, such as detection of disease-related proteins, genes, and pathogenic viruses, and bacteria. This chapter briefly explains the operation principles of three-dimensional (3D) and two-dimensional (2D) photonic crystals, presents how the PhC structures can be fabricated inexpensively, and demonstrate several key applications as for the detection of biomolecules. These applications are based on four main sensing modalities: reflectometry, fluorescence emission, surface-enhanced Raman scattering, and photoacoustic detection. The chapter discusses the implementations of PhC sensors to facilitate the detection of biomolecules via these venues. For each detection modality, we will elaborate the advantages provided by the PhC sensors in the context of specific applications and sensing performances, such as sensitivity and limit of detection. The PhC-based biosensors not only offer new ways to detect biomolecule with low cost and high throughput but also enable researchers and clinicians to improve exiting lab-based assays to achieve better assay sensitivities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Inan H, Poyraz M, Inci F, Lifson MA, Baday M, Cunningham BT, Demirci U. Photonic crystals: emerging biosensors and their promise for point-of-care applications. Chem Soc Rev. 2017;46(2):366–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhao Y, Zhao X, Gu Z. Photonic crystals in bioassays. Adv Funct Mater. 2010;20(18):2970–88.

    Article  CAS  Google Scholar 

  3. Pitruzzello G, Krauss TF. Photonic crystal resonances for sensing and imaging. J Opt. 2018;20(7):073004.

    Article  CAS  Google Scholar 

  4. Chow E, Grot A, Mirkarimi LW, Sigalas M, Girolami G. Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Opt Lett. 2004;29(10):1093–5.

    Article  CAS  PubMed  Google Scholar 

  5. Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett. 1987;58(20):2059.

    Article  CAS  PubMed  Google Scholar 

  6. Joannopoulos JD, Meade RD, Winn JN. Photonic crystals. Molding the flow of light. Princeton, NJ: Princeton University Press; 1995.

    Google Scholar 

  7. Ho KM, Chan CT, Soukoulis CM. Existence of a photonic gap in periodic dielectric structures. Phys Rev Lett. 1990;65(25):3152.

    Article  CAS  PubMed  Google Scholar 

  8. Fan S, Villeneuve PR, Meade RD, Joannopoulos JD. Design of three-dimensional photonic crystals at submicron lengthscales. Appl Phys Lett. 1994;65(11):1466–8.

    Article  CAS  Google Scholar 

  9. Lin S-y, Fleming JG, Hetherington DL, Smith BK, Biswas R, Ho KM, Sigalas MM, Zubrzycki W, Kurtz SR, Bur J. A three-dimensional photonic crystal operating at infrared wavelengths. Nature. 1998;394(6690):251–3.

    Article  CAS  Google Scholar 

  10. Wang H, Zhang K-Q. Photonic crystal structures with tunable structure color as colorimetric sensors. Sensors. 2013;13(4):4192–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chutinan A, Noda S. Waveguides and waveguide bends in two-dimensional photonic crystal slabs. Phys Rev B. 2000;62(7):4488.

    Article  CAS  Google Scholar 

  12. Johnson SG, Fan S, Villeneuve PR, Joannopoulos JD, Kolodziejski LA. Guided modes in photonic crystal slabs. Phys Rev B. 1999;60(8):5751.

    Article  CAS  Google Scholar 

  13. Chow E, Lin SY, Johnson SG, Villeneuve PR, Joannopoulos JD, Wendt JR, Vawter GA, Zubrzycki W, Hou H, Alleman A. Three-dimensional control of light in a two-dimensional photonic crystal slab. Nature. 2000;407(6807):983–6.

    Article  CAS  PubMed  Google Scholar 

  14. Rajan R, Babu PR, Senthilnathan K. The dawn of photonic crystals: an avenue for optical computing. In: Theoretical foundations and application of photonic crystals. Rijeka: InTech; 2018. p. 119.

    Google Scholar 

  15. Wang SS, Magnusson RJAO. Theory and applications of guided-mode resonance filters. Appl Opt. 1993;32(14):2606–13.

    Article  CAS  PubMed  Google Scholar 

  16. Liu J-N, Schulmerich MV, Bhargava R, Cunningham BT. Sculpting narrowband Fano resonances inherent in the large-area mid-infrared photonic crystal microresonators for spectroscopic imaging. Opt Express. 2014;22(15):18142–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zhuo Y, Hu H, Wang Y, Marin T, Lu M. Photonic crystal slab biosensors fabricated with helium ion lithography (HIL). Sensors Actuators A Phys. 2019;297:111493.

    Article  CAS  Google Scholar 

  18. Liu L, Khan HA, Li J, Hillier AC, Lu M. A strain-tunable nanoimprint lithography for linear variable photonic crystal filters. Nanotechnology. 2016;27(29):295301.

    Article  PubMed  CAS  Google Scholar 

  19. Armstrong E, Osiak M, Glynn C, O’Dwyer C. Investigations into structure and chemistry of 1D, 2D and 3D structured vanadium oxide nanomaterials for Li-ion batteries. ECS Trans. 2014;58(14):3–12.

    Article  Google Scholar 

  20. Lee W, Pruzinsky SA, Braun PV. Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals. Adv Mater. 2002;14(4):271–4.

    Article  CAS  Google Scholar 

  21. Kohoutek T, Parchine M, Bardosova M, Pemble ME. Controlled self-assembly of Langmuir-Blodgett colloidal crystal films of monodispersed silica particles on non-planar substrates. Colloids Surf A Physicochem Eng Asp. 2020;593:124625.

    Article  CAS  Google Scholar 

  22. Pokhriyal A, Lu M, Chaudhery V, Huang C-S, Schulz S, Cunningham BT. Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection. Opt Express. 2010;18(24):24793–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Byun I, Kim J. Cost-effective laser interference lithography using a 405 nm AlInGaN semiconductor laser. J Micromech Microeng. 2010;20(5):055024.

    Article  CAS  Google Scholar 

  24. Burrow GM, Gaylord TK. Multi-beam interference advances and applications: nano-electronics, photonic crystals, metamaterials, subwavelength structures, optical trapping, and biomedical structures. Micromachines. 2011;2(2):221–57.

    Article  Google Scholar 

  25. Holtz JH, Asher SA. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature. 1997;389(6653):829–32.

    Article  CAS  PubMed  Google Scholar 

  26. Bai L, Xie Z, Cao K, Zhao Y, Xu H, Zhu C, Zhongde M, Zhong Q, Gu Z. Hybrid mesoporous colloid photonic crystal array for high performance vapor sensing. Nanoscale. 2014;6(11):5680–5.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao Y-J, Zhao X-W, Hu J, Li J, Xu W-Y, Gu Z-Z. Multiplex label-free detection of biomolecules with an imprinted suspension array. Angew Chem Int Ed. 2009;48(40):7350–2.

    Article  CAS  Google Scholar 

  28. Mu Z, Zhao X, Huang Y, Lu M, Gu Z. Photonic crystal hydrogel enhanced plasmonic staining for multiplexed protein analysis. Small. 2015;11(45):6036–43.

    Article  CAS  PubMed  Google Scholar 

  29. Liu B, Zhao X, Jiang W, Degang F, Gu Z. Multiplex bioassays encoded by photonic crystal beads and SERS nanotags. Nanoscale. 2016;8(40):17465–71.

    Article  CAS  PubMed  Google Scholar 

  30. Cunningham B, Lin B, Qiu J, Li P, Pepper J, Hugh B. A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions. Sensors Actuators B Chem. 2002;85(3):219–26.

    Article  CAS  Google Scholar 

  31. Chan LL, Cunningham BT, Li PY, Puff D. Self-referenced assay method for photonic crystal biosensors: application to small molecule analytes. Sensors Actuators B Chem. 2007;120(2):392–8.

    Article  CAS  Google Scholar 

  32. Cunningham BT. Photonic crystals utilized for label-free and amplified fluorescence biodetection. In: Micro (MEMS) and nanotechnologies for space, defense, and security II, vol. 6959. Bellingham WA: International Society for Optics and Photonics; 2008. p. 695910.

    Chapter  Google Scholar 

  33. Choi CJ, Cunningham BT. Single-step fabrication and characterization of photonic crystal biosensors with polymer microfluidic channels. Lab Chip. 2006;6(10):1373–80.

    Article  CAS  PubMed  Google Scholar 

  34. Chen W, Long KD, Lu M, Chaudhery V, Yu H, Choi JS, Polans J, Zhuo Y, Harley BAC, Cunningham BT. Photonic crystal enhanced microscopy for imaging of live cell adhesion. Analyst. 2013;138(20):5886–94.

    Article  CAS  PubMed  Google Scholar 

  35. Choi CJ, Belobraydich AR, Chan LL, Mathias PC, Cunningham BT. Comparison of label-free biosensing in microplate, microfluidic, and spot-based affinity capture assays. Anal Biochem. 2010;405(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  36. Zhuo Y, Hu H, Chen W, Lu M, Tian L, Yu H, Long KD, et al. Single nanoparticle detection using photonic crystal enhanced microscopy. Analyst. 2014;139(5):1007–15.

    Article  CAS  PubMed  Google Scholar 

  37. Chaudhery V, George S, Lu M, Pokhriyal A, Cunningham BT. Nanostructured surfaces and detection instrumentation for photonic crystal enhanced fluorescence. Sensors. 2013;13(5):5561–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ganesh N, Zhang W, Mathias PC, Chow E, Soares JANT, Malyarchuk V, Smith AD, Cunningham BT. Enhanced fluorescence emission from quantum dots on a photonic crystal surface. Nat Nanotechnol. 2007;2(8):515–20.

    Article  PubMed  Google Scholar 

  39. Mathias PC, Jones SI, Wu H-Y, Yang F, Ganesh N, Gonzalez DO, Bollero G, Vodkin LO, Cunningham BT. Improved sensitivity of DNA microarrays using photonic crystal enhanced fluorescence. Anal Chem. 2010;82(16):6854–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang C-S, George S, Lu M, Chaudhery V, Tan R, Zangar RC, Cunningham BT. Application of photonic crystal enhanced fluorescence to cancer biomarker microarrays. Anal Chem. 2011;83(4):1425–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao X, Xue J, Zhongde M, Huang Y, Lu M, Gu Z. Gold nanoparticle incorporated inverse opal photonic crystal capillaries for optofluidic surface enhanced Raman spectroscopy. Biosens Bioelectron. 2015;72:268–74.

    Article  CAS  PubMed  Google Scholar 

  42. Zhao Y, Liu K, McClelland J, Lu M. Enhanced photoacoustic detection using photonic crystal substrate. Appl Phys Lett. 2014;104(16):161110.

    Article  CAS  Google Scholar 

  43. Zhao Y, Cao M, McClelland JF, Shao Z, Lu M. A photoacoustic immunoassay for biomarker detection. Biosens Bioelectron. 2016;85:261–6.

    Article  CAS  PubMed  Google Scholar 

  44. Zhao Y, Huang Y, Zhao X, McClelland JF, Lu M. Nanoparticle-based photoacoustic analysis for highly sensitive lateral flow assays. Nanoscale. 2016;8(46):19204–10.

    Article  CAS  PubMed  Google Scholar 

  45. Alexeev VL, Das S, Finegold DN, Asher SA. Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid. Clin Chem. 2004;50(12):2353–60.

    Article  CAS  PubMed  Google Scholar 

  46. Nakayama D, Takeoka Y, Watanabe M, Kataoka K. Simple and precise preparation of a porous gel for a colorimetric glucose sensor by a templating technique. Angew Chem Int Ed. 2003;42(35):4197–200.

    Article  CAS  Google Scholar 

  47. Zhao Y, Zhao X, Tang B, Xu W, Li J, Gu Z. Quantum-dot-tagged bioresponsive hydrogel suspension array for multiplex label-free DNA detection. Adv Funct Mater. 2010;20(6):976–82.

    Article  CAS  Google Scholar 

  48. Ganesh N, Cunningham BT. Photonic cyrstal near-ultraviolet reflectance filters fabricated by nanoreplica molding. Appl Phys Lett. 2006;88(7):071110.

    Article  CAS  Google Scholar 

  49. Choi CJ, Block ID, Bole B, Dralle D, Cunningham BT. Label-free photonic crystal biosensor integrated microfluidic chip for determination of kinetic reaction rate constants. IEEE Sensors J. 2009;9(12):1697–704.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangwei Zhao or Meng Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wei, L., Pavin, S., Zhao, X., Lu, M. (2021). Photonic Crystals for Biomolecule Sensing Applications. In: Zhao, X., Lu, M. (eds) Nanophotonics in Biomedical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-6137-5_1

Download citation

Publish with us

Policies and ethics