Skip to main content

Newly Introduced or Modified Genes in Plants Potentially Modulate the Host Microbiome

  • Chapter
  • First Online:
Rhizosphere Biology: Interactions Between Microbes and Plants

Part of the book series: Rhizosphere Biology ((RHBIO))

  • 1187 Accesses

Abstract

The selection of the microbiota by plants involves a large number of traits including the physicochemical properties of the soil, the composition of the soil microbiota which is the reservoir, the root architecture, the composition of the root cell wall, and the composition of root exudates which can act as nutrients and signalling molecules. Any modification of these traits can lead to a modulation of the microbiota hosted by the plant and could therefore have an impact on plant health. Newly introduced or modified genes into plants which are involved in new metabolic pathways or in the response to pests may modify root exudates’ quality and quantity and hence have an impact on plant microbiome diversity and function. This chapter reviews recent studies and emerging trends on how the modification of root exudates could impact the plant microbiome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 25 October 2020

    The original version of the chapter was inadvertently published with an error in author affiliation. Author Feth el Zahar Haichar is also affiliated to “INSA-Lyon, Université Claude Bernard Lyon1, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Univ Lyon, 10 rue Raphaël Dubois, 69622, Villeurbanne, France”. The chapter and list of contributors in FM has now been corrected by including the second affiliation.

References

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  PubMed  CAS  Google Scholar 

  • Badri DV, Loyola-Vargas VM, Broeckling CD et al (2008) Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette (ABC) transporter mutants. Plant Physiol 146:762–771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG et al (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  PubMed  CAS  Google Scholar 

  • Bressan M, Roncato MA, Bellvert F et al (2009) Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J 3:1243–1257

    Article  PubMed  CAS  Google Scholar 

  • Brolsma KM, Vonk JA, Hoffland E et al (2015) Effects of GM potato Modena on soil microbial activity and litter decomposition fall within the range of effects found for two conventional cultivars. Biol Fertil Soils 51:913–922

    Article  CAS  Google Scholar 

  • Bruinsma M, Kowalchuk GA, van Veen JA (2003) Effects of genetically modified plants on microbial communities and processes in soil. Biol Fertil Soils 37:329–337

    Article  Google Scholar 

  • Carvalhais LC, Schenk PM, Dennis PG (2017) Jasmonic acid signalling and the plant holobiont. Curr Opin Microbiol 37:42–47

    Article  PubMed  CAS  Google Scholar 

  • Carvalhais LC, Dennis PG, Badri DV, Kidd BN, Vivanco JM, Schenk PM, (2015) Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Mol Plant-Microbe Interact 28(9):1049–1058

    Google Scholar 

  • Chaparro JM, Badri DV, Bakker MG et al (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 2:e55731

    Article  Google Scholar 

  • Dias ACF, Dini-Andreote F, Hannula SE et al (2013) Different selective effects on rhizosphere bacteria exerted by genetically modified versus conventional potato lines. PLoS One 8:e67948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guyonnet JP, Vautrin F, Meiffren G et al (2017) The effects of plant nutritional strategy on soil microbial denitrification activity through rhizosphere primary metabolites. FEMS Microbiol Ecol 93(4):fix022

    Article  Google Scholar 

  • Guyonnet JP, Cantarel A, Simon L, Haichar FZ (2018) Root exudation rate as a functional trait involved in plant nutrient-use strategy classification. Ecol Evol 8(16):8573–8581

    Article  PubMed  PubMed Central  Google Scholar 

  • Haichar FZ, Marol C, Berge O et al (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221–1230

    Article  PubMed  CAS  Google Scholar 

  • Haichar FZ, Santaella C, Heulin T et al (2014) Root exudates mediated interactions belowground. Soil Biol Biochem 77:69–80

    Article  CAS  Google Scholar 

  • Haichar FZ, Heulin T, Guyonnet JP et al (2016) Stable isotope probing of carbon flow in the plant holobiont. Curr Opin Biotech 41:9–13

    Article  PubMed  CAS  Google Scholar 

  • Hannula SE, De Boer W, Baldrian P et al (2013) Effect of genetic modification of potato starch on decomposition of leaves and tubers and on fungal decomposer communities. Soil Biol Biochem 58:88–98

    Article  CAS  Google Scholar 

  • Holmalahti J, von Wright A, Ratikainen AO (1994) Variations in the spectra of biological activities of actinomycetes isolated from different soils. Lett Appl Microbiol 18:1544–1546

    Article  Google Scholar 

  • Icoz I, Stotzky G (2008) Fate and effects of insect-resistant Bt crops in soil ecosystems. Soil Biol Biochem 40:559–586

    Article  CAS  Google Scholar 

  • İnceoğlu Ö, Van Overbeek LS, Salles JF et al (2013) Normal operating range of bacterial communities in soil used for potato cropping. Appl Environ Microbiol 79:1160–1170

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    Article  CAS  Google Scholar 

  • Kabouw P, van Dam NM, van der Putten WH et al (2012) How genetic modification of roots affects rhizosphere processes and plant performance. J Exp Bot 63:3475–3483

    Article  PubMed  CAS  Google Scholar 

  • Kniskern JM, Traw MB, Bergelson J (2007) Salicylic acid and jasmonic acid signaling defense pathways reduce natural bacterial diversity on Arabidopsis thaliana. Mol Plant-Microbe Interact 20:1512–1522

    Article  PubMed  CAS  Google Scholar 

  • Kowalchuk GA, Buma DS, de Boer W et al (2002) Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek 81:509–520

    Article  PubMed  Google Scholar 

  • Kumar A, Verma JP (2018) Does plant-microbe interaction confer stress tolerance in plants: a review ? Microbiol Res 207:41–52

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Zeng Q, Yan F et al (2005) Effects of transgenic plants on soil microorganisms. Plant Soil 271:1–13

    Article  CAS  Google Scholar 

  • Loyola-Vargas VM, Broeckling CD, Badri DV et al (2007) Effect of transporters on the secretion of phytochemicals by the roots of Arabidopsis thaliana. Planta 225:301–310

    Article  PubMed  CAS  Google Scholar 

  • Lynch JM (1990) The rhizosphere. Wiley, New York

    Google Scholar 

  • Mansouri M, Petit A, Oger P et al (2002) Engineered rhizosphere: the trophic bias generated by opine-producing plants is independent of the opine-type, the soil origin and the plant species. Appl Environ Microbiol 68:2562–2566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Monday S, Lenglet A, Beury-cirou A et al (2014) An increasing opine carbon bias in artificial exudation systems and genetically modified plant rhizospheres leads to an increasing reshaping of bacterial populations. Mol Ecol 23:4846–4861

    Article  Google Scholar 

  • Oger P, Petit A, Dessaux Y (1997) Genetically engineered plants producing opines alter their biological environment. Nat Biotechnol 15:369–372

    Article  PubMed  CAS  Google Scholar 

  • Oger P, Mansouri H, Dessaux Y (2000) Effect of crop rotation and soil cover on alteration of the soil microflora generated by the culture of transgenic plants producing opines. Mol Ecol 9:881–890

    Article  PubMed  CAS  Google Scholar 

  • Oger P, Mansouri H, Nesme X et al (2004) Engineering root exudation of Lotus toward the production of two novel carbon compounds leads to the selection of distinct microbial populations in the rhizosphere. Microb Ecol 47:96–103

    Article  PubMed  CAS  Google Scholar 

  • Petit A, Dessaux Y, Tempé J (1978) The biological significance of opines. I. a study of opine catabolism by Agrobacterium tumefaciens. In: Proceedings of the 4th international conference on plant pathogenic bacteria, vol 1. Gilbert‐Clarey, Angers, pp 143–151

    Google Scholar 

  • Pinton R, Varanini Z, Nannipieri P (2001) The rhizosphere as a site of biochemical interactions among soil components, plants, and microorganisms. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Marcel Dekker, New York, pp 1–17

    Google Scholar 

  • Privalle LS, Gillikin N, Wandelt C (2013) Bringing a transgenic crop to market: where compositional analysis fits. J Agric Food Chem 61:8260–8266

    Article  PubMed  CAS  Google Scholar 

  • Saxena D, Stoztky G (2000) Insecticidal toxin from Bacillus thuringiensis is released from roots of transgenic Bt corn in vitro and in situ. FEMS Microbiol Ecol 3:35–39

    Article  Google Scholar 

  • Saxena D, Flores S, Stotzky G (1999) Insecticidal toxin in root exudates from Bt corn. Nature 402:480

    Article  PubMed  CAS  Google Scholar 

  • Singh AK, Singh M, Dubey SK (2013a) Changes in Actinomycetes community structure under the influence of Bt transgenic brinjal crop in a tropical agroecosystem. BMC Microbiol 13:122–133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh AK, Rai GK, Singh M, Dubey SK (2013b) Bacterial community structure in the rhizosphere of Cry1Ac Bt-Brinjal crop and comparison to its non-transgenic counterpart in the tropical soil. Microb Ecol 66:927–939

    Article  PubMed  Google Scholar 

  • Singh AK, Singh M, Dubey SK (2014) Rhizospheric fungal community structure of a Bt brinjal and a near isogenic variety. J Appl Microbiol 117:750–765

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama A, Shitan N, Yazaki K (2007) Involvement of a soybean ATP-binding cassette-type transporter in the secretion of genistein, a signal flavonoid in legume-rhizobium symbiosis. Plant Physiol 144:2000–2008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Turrini C, Sbrana L, Pitto M et al (2004) The antifungal Dm-AMP1 protein from Dahlia merckii Lehm. Expressed in Solanum melongenais released in root exudates and differentially affects pathogenic fungi and mycorrhizal symbiosis. New Phytol 163:393–403

    Article  CAS  Google Scholar 

  • Turrini A, Sbrana C, Giovannetti M (2015) Belowground environmental effects of transgenic crops: a soil microbial perspective. Res Microbiol 166:121–131

    Article  PubMed  Google Scholar 

  • Weinert N, Meincke R, Gottwald C et al (2009) Rhizosphere communities of genetically modified Zeaxanthin-accumulating potato plants and their parent cultivar differ less than those of different Potat cultivars. Appl Environ Microbiol 75:3859–3865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weisskopf L, Abou-Mansour E, Fromin N et al (2006) White lupin has developed a complex strategy to limit microbial degradation of secreted citrate required for phosphate acquisition. Plant Cell Environ 29:919–927

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by French National Research Agency (ANR-18-CE32-0005, DIORE). We warmly thank M. Hamid BAYA for the design of the figure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feth el Zahar Haichar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zahar Haichar, F.e., Achouak, W. (2021). Newly Introduced or Modified Genes in Plants Potentially Modulate the Host Microbiome. In: Gupta, V.V.S.R., Sharma, A.K. (eds) Rhizosphere Biology: Interactions Between Microbes and Plants. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6125-2_9

Download citation

Publish with us

Policies and ethics