Skip to main content

Root Microbiome Structure and Microbial Succession in the Rhizosphere

  • Chapter
  • First Online:
Rhizosphere Biology: Interactions Between Microbes and Plants

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

Plant root–biota associations involve complex networks between micro- and macroorganisms that interact across diverse temporal and spatial scales and in response to a wide range of climatic and environmental variables. The root–microbiome has a major impact on plant health through interactions on growth and development, facilitation of nutrient uptake and ability to tolerate biotic and abiotic stresses. Renewed interest in plant–microbe interactions has been driven by the availability of more precise molecular and analytical techniques that allow the detailed description and understanding of the dynamics of rhizosphere and endosphere communities. A better understanding of the succession of the root microbiome, i.e. how the microbiome changes in relation to crop growth, provides new opportunities for capturing the potential benefits from positive root–microbiome interactions. Recent evidence has confirmed that root type and localization has a significant influence on the diversity and composition of bacterial, actinobacterial and fungal communities, including specific functional groups such as arbuscular mycorrhizal fungi communities across a wide range of plant species. Such differences are driven by variations in root structure and the quantity and composition of root exudates along with microbe–microbe, plant–microbe and microbe–fauna interactions. Evidence for association between temporal changes in the composition of root exudates and the functionality of microbial substrate preferences has also been shown. The interaction between root and rhizosphere development and community composition, in terms of taxonomic/phylogenetic makeup, however, needs to extend to functional groups associated with key traits related to plant health and nutrition. An improved ability to predict functionality from the dynamic changes in root microbiome composition is an important requirement to develop management interventions for ‘designer’ microbiomes and to achieve improved productivity and sustainability in agricultural systems. For this, a more detailed genomic and functional characterization of plant-associated microorganisms, their genes and plant–microbe interactions for specific beneficial functions is required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed MA, Zarebanadkouki M, Meunier F, Javaux M, Kaestner A, Carminati A (2018) Root type matters: measurement of water uptake by seminal, crown, and lateral roots in maize. J Exp Bot 69:1199–1206

    PubMed  PubMed Central  CAS  Google Scholar 

  • Arshad M, Frankenberger WT (1998) Plant growth-regulating substances in the rhizosphere: microbial production and functions. Adv Agron 62:45–151

    CAS  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    PubMed  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    PubMed  CAS  Google Scholar 

  • Bakker MG, Manter DK, Sheflin AM, Weir TL, Vivanco JM (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360:1–13

    CAS  Google Scholar 

  • Bakker P, Berendsen RL, Doornbos RF, Wintermans PCA, Pieterse CMJ (2013a) The rhizosphere revisited: root microbiomics. Front Plant Sci 4:165

    PubMed  PubMed Central  Google Scholar 

  • Bakker P, Doornbos RF, Zamioudis C, Berendsen RL, Pieterse CMJ (2013b) Induced systemic resistance and the rhizosphere microbiome. Plant Pathol J 29:136–143

    PubMed  PubMed Central  Google Scholar 

  • Bardgett RD, Mommer L, De Vries FT (2014) Going underground: root traits as drivers of ecosystem processes. Trends Ecol Evol 29:692–699

    PubMed  Google Scholar 

  • Baudoin E, Benizri E, Guckert A (2002) Impact of growth stage on the bacterial community structure along maize roots, as determined by metabolic and genetic fingerprinting. Appl Soil Ecol 19:135–145

    Google Scholar 

  • Baudoin E, Benizri E, Guckert A (2003) Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol Biochem 35:1183–1192

    CAS  Google Scholar 

  • Beckers B, De Beeck MO, Weyens N, Boerjan W, Vangronsveld J (2017) Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome 5:25

    PubMed  PubMed Central  Google Scholar 

  • Bonkowski M, Villenave C, Griffiths B (2009) Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321:213–233

    CAS  Google Scholar 

  • Bouffaud ML, Poirier MA, Muller D, Moenne-Loccoz Y (2014) Root microbiome relates to plant host evolution in maize and other Poaceae. Environ Microbiol 16:2804–2814

    PubMed  Google Scholar 

  • Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102

    Google Scholar 

  • Buée M, De Boer W, Martin F, van Overbeek L, Jurkevitch E (2009) The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321:189–212

    Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    PubMed  CAS  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    PubMed  CAS  Google Scholar 

  • Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, Morsy M, Eisen JA, Leach JE, Dangl JL (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15:e2001793

    PubMed  PubMed Central  Google Scholar 

  • Chailva M, Fossalunga AS, Daghino S, Ghignone S, Bagnaresi P, Chiapello M, Novero M, Spadaro D, Perotto S, Bonfante P (2018) Native soils with their microbiotas elicit a state of alert in tomato plants. New Phytol 220:1296–1308

    Google Scholar 

  • Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8:e55731

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8:790–803

    PubMed  CAS  Google Scholar 

  • Chen L, Brookes PC, Xu JM, Zhang JB, Zhang CZ, Zhou XY, Luo Y (2016) Structural and functional differentiation of the root-associated bacterial microbiomes of perennial ryegrass. Soil Biol Biochem 98:1–10

    CAS  Google Scholar 

  • Chochois V, Vogel JP, Rebetzke GJ, Watt M (2015) Variation in adult plant phenotypes and partitioning among seed and stem-borne roots across Brachypodium distachyon accessions to exploit in breeding cereals for well-watered and drought environments. Plant Physiol 168:953–967

    PubMed  PubMed Central  Google Scholar 

  • Clarholm M, Skyllberg U, Rosling A (2015) Organic acid induced release of nutrients from metal-stabilized soil organic matter – the unbutton model. Soil Biol Biochem 84:168–176

    CAS  Google Scholar 

  • Compant S, Samad A, Faist H, Sessitsch A (2019) A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J Adv Res 19:29–37

    PubMed  PubMed Central  CAS  Google Scholar 

  • Conn VM, Walker AR, Franco CMM (2008) Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Mol Plant-Microbe Interact 21:208–218

    PubMed  CAS  Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II aluminum stimulated excretion of malic acid from root apices. Plant Physiol 103:695–702

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72:313–327

    PubMed  CAS  Google Scholar 

  • Dessaux Y, Hinsinger P, Lemanceau P (2010) Rhizosphere: achievements and challenges. Development in plant and soil sciences, vol 104. Springer, Berlin, 535 pp

    Google Scholar 

  • Donn S, Kirkegaard JA, Perera G, Richardson AE, Watt M (2015) Evolution of bacterial communities in the wheat crop rhizosphere. Environ Microbiol 17:610–621

    PubMed  Google Scholar 

  • Donn S, Kawasaki A, Delroy B, Chochois V, Watt M, Powell JR (2017) Root type is not an important driver of mycorrhizal colonisation in Brachypodium distachyon. Pedobiologia 65:5–15

    Google Scholar 

  • Edwards J, Johnson C, Santos-Medellin C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA 112:e911–e920

    PubMed  CAS  PubMed Central  Google Scholar 

  • Faure D, Vereecke D, Leveau JHJ (2009) Molecular communication in the rhizosphere. Plant Soil 321:279–303

    CAS  Google Scholar 

  • Finch HJS, Samuel AM, Lane GPF (2014) Plants. In: Finch HJS, Samuel AM, Lane GPF (eds) Lockhart & Wiseman’s crop husbandry including grassland, 9th edn. Woodhead Publishing, Sawston, pp 3–26

    Google Scholar 

  • Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750

    PubMed  Google Scholar 

  • Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488:535

    PubMed  CAS  Google Scholar 

  • Gedes PP, Joffrin A, Thompson AL, Christensen K, Jorrin B, Brett P, Conway SJ, Oldroyd GED, Poole PS (2019) Engineering transkingdom signalling in plants to control gene expression in rhizosphere bacteria. Nat Commun 10:3430

    Google Scholar 

  • Gupta VVSR, Knox OGG (2010) How best can we design rhizosphere plant-microbe interactions for the benefit of plant growth? In: Gupta VVSR, Ryder MM, Radcliffe J (eds) The rovira rhizosphere symposium - celebrating 50 years of rhizosphere research. The Crawford Fund, Deakin, pp 11–24

    Google Scholar 

  • Gupta VVSR, Kroker SK, Hicks M, Davoren CW, Descheemaeker K, Llewellyn RS (2014) Nitrogen cycling in summer active perennial grass systems in South Australia: non-symbiotic nitrogen fixation. Crop Pasture Sci 65:1044–1056

    CAS  Google Scholar 

  • Gutjahr C, Sawers RJH, Marti G, Andres-Hernandez L, Yang SY, Casieri L, Angliker H, Oakeley EJ, Wolfender JL, Abreu-Goodger C, Paszkowski U (2015) Transcriptome diversity among rice root types during asymbiosis and interaction with arbuscular mycorrhizal fungi. Proc Natl Acad Sci USA 112:6754–6759

    PubMed  CAS  PubMed Central  Google Scholar 

  • Haling RE, Yang ZJ, Shadwell N, Culvenor RA, Stefanski A, Ryan MH, Sandral GA, Kidd DR, Lambers H, Simpson RJ (2016) Root morphological traits that determine phosphorus-acquisition efficiency and critical external phosphorus requirement in pasture species. Funct Plant Biol 43:815–826

    PubMed  CAS  Google Scholar 

  • Hamonts K, Trivedi P, Garg A, Janitz C, Grinyer J, Holford P, Botha FC, Anderson IC, Singh BK (2018) Field study reveals core plant microbiota and relative importance of their drivers. Environ Microbiol 20:124–140

    PubMed  CAS  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321:5–33

    CAS  Google Scholar 

  • Kawasaki A, Donn S, Ryan PR, Mathesius U, Devilla R, Jones A, Watt M (2016) Microbiome and exudates of the root and rhizosphere of Brachypodium distachyon, a model for wheat. PLoS One 11:e0164533

    PubMed  PubMed Central  Google Scholar 

  • Kawasaki A, Okada S, Zhang C, Delhaize E, Mathesius U, Richardson AE, Watt M, Gilliham M, Ryan PR (2018) A novel sterile hydroponic system for characterising root exudates from specific root types and whole root systems of larger crop plants. Plant Methods 14:114

    PubMed  PubMed Central  CAS  Google Scholar 

  • Knox OGG, Gupta VVSR, Lardner R (2014) Field evaluation of the effects of cotton variety and GM status on rhizosphere microbial diversity and function in Australian soils. Soil Res 52:203–215

    Google Scholar 

  • Lareen A, Burton F, Schafer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90:575–587

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Malfatti S, del Rio TG, Jones CD, Tringe SG, Dangl JL (2015) Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349:860–864

    PubMed  CAS  Google Scholar 

  • Liljeroth E, Burgers S, vanVeen JA (1991) Changes in bacterial populations along roots of wheat (Triticum aestivum L.) seedlings. Biol Fertil Soils 10:276–280

    Google Scholar 

  • Lilley JM, Kirkegaard JA (2016) Farming system context drives the value of deep wheat roots in semi-arid environments. J Exp Bot 67:3665–3681

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, del Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    PubMed  PubMed Central  CAS  Google Scholar 

  • O’Banion BS, O’Neal L, Alexandre G, Lebeis SL (2020) Bridging the gap between single-strain and community level plant-microbe chemical interactions. Mol Plant-Microbe Interact 33:124–134

    PubMed  Google Scholar 

  • Ofek-Lalzar M, Sela N, Goldman-Voronov M, Green SJ, Hadar Y, Minz D (2014) Niche and host-associated functional signatures of the root surface microbiome. Nat Commun 5:4950

    PubMed  CAS  Google Scholar 

  • Pascale A, Proietti S, Pantelides IS, Stringlis IA (2020) Modulation of the root microbiome by plant molecules: the basis for targeted disease suppression and plant growth promotion. Front Plant Sci 10:1741

    PubMed  PubMed Central  Google Scholar 

  • Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci USA 110:6548–6553

    PubMed  CAS  PubMed Central  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    CAS  PubMed  Google Scholar 

  • Pinton R, Varanini Z, Nannipieri P (2001) The Rhizosphere. Biochemistry and organic substances at the soil-plant interface. Marcel Decker, New York, 410 pp

    Google Scholar 

  • Quiza L, St-Arnaud M, Yergeau E (2015) Harnessing phytomicrobiome signalling for rhizosphere microbiome engineering. Front Plant Sci 6:507

    PubMed  PubMed Central  Google Scholar 

  • Rascovan N, Carbonetto B, Perrig D, Diaz M, Canciani W, Abalo M, Alloati J, Gonzalez-Anta G, Vazquez MP (2016) Integrated analysis of root microbiomes of soybean and wheat from agricultural fields. Sci Rep 6:28084

    PubMed  PubMed Central  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443

    PubMed  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    CAS  Google Scholar 

  • Rovira AD, Newman EI, Bowen HJ, Campbell R (1974) Quantitative assessment of rhizoplane microflora by direct microscopy. Soil Biol Biochem 6:211–216

    Google Scholar 

  • Rudrappa T, Czymmek KJ, Pare PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ryan PR, Raman H, Gupta S, Horst WJ, Delhaize E (2009) A second mechanism for aluminium resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol 149:340–351

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23:25–41

    PubMed  CAS  Google Scholar 

  • Shade A, Handelsman J (2012) Beyond the Venn diagram: the hunt for a core microbiome. Environ Microbiol 14:4–12

    PubMed  CAS  Google Scholar 

  • Shi S, Richardson AE, O’Callaghan M, DeAngelis KM, Jones EE, Stewart A, Firestone M, Condron L (2011) Influence of selected root exudate components on soil microbial communities. FEMS Microb Ecol 77:600–610

    CAS  Google Scholar 

  • Shi SJ, Nuccio E, Herman DJ, Rijkers R, Estera K, Li JB, da Rocha UN, He ZL, Pett-Ridge J, Brodie EL, Zhou JZ, Firestone M (2015) Successional trajectories of rhizosphere bacterial communities over consecutive seasons. MBio 6:e746-15

    Google Scholar 

  • Sivasithamparam K, Parker CA (1978) Effect of infection of seminal and nodal roots by take-all fungus on tiller numbers and shoot weight of wheat. Soil Biol Biochem 10:365–368

    Google Scholar 

  • Sivasithamparam K, Parker CA, Edwards CS (1979) Rhizosphere microorganisms of seminal and nodal roots of wheat grown in pots. Soil Biol Biochem 11:155–160

    Google Scholar 

  • Smith DL, Subramanian S, Lamont JR, Bywater-Ekegard M (2015) Signalling in the phytomicrobiome: breadth and potential. Front Plant Sci 6:709

    PubMed  PubMed Central  Google Scholar 

  • Sun B, Gao Y, Lynch J (2018) Large crown root number improves topsoil foraging and phosphorus acquisition. Plant Physiol 177:90–104

    PubMed  PubMed Central  CAS  Google Scholar 

  • Swanson M, Fraser G, Daniell TJ, Torrance L, Gregory PJ, Taliansky M (2009) Viruses in soils: morphological diversity and abundance in the rhizosphere. Ann Appl Biol 155:51–60

    Google Scholar 

  • Taye ZM, Helgason BL, Bell JK, Norris CE, Vail S, Robinson SJ, Parkin IAP, Arcand M, Mamet S, Links MG, Dowhy T, Siciliano S, Lamd EG (2020) Core and differentially abundant bacterial taxa in the Rhizosphere of field grown Brassica napus genotypes: implications for canola breeding. Front Microbiol 10:3007. https://doi.org/10.3389/fmicb.2019.03007

    Article  PubMed  PubMed Central  Google Scholar 

  • Tkacz A, Cheema J, Chandra G, Grant A, Poole PS (2015) Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. ISME J 9:2349–2359

    PubMed  PubMed Central  CAS  Google Scholar 

  • Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, Fukuda S, Ushio M, Nakaoka S, Onoda Y, Yoshida K, Schlaeppi K, Bai Y, Sugiura R, Ichihashi Y, Minamisawa K, Kiers ET (2018) Core microbiomes for sustainable agroecosystems. Nat Plants 4:247–257

    PubMed  Google Scholar 

  • Trda L, Boutrot F, Claverie J, Brule D, Dorey S, Poinssot B (2015) Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline. Front Plant Sci 6:219

    PubMed  PubMed Central  Google Scholar 

  • Vergnes S, Gayrard D, Veyssiere M, Toulotte J, Martinez Y, Dumont V, Bouchez O, Rey T, Dumas B (2020) Phyllosphere colonization by a soil Streptomyces sp. promotes plant defense responses against fungal infection. Mol Plant-Microbe Interact 33:223–234

    PubMed  CAS  Google Scholar 

  • Wagner MR, Lundberg DS, del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T (2016) Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun 7:12151

    PubMed  PubMed Central  CAS  Google Scholar 

  • Watt M, Silk WK, Passioura JB (2006) Rates of root and organism growth, soil conditions, and temporal and spatial development of the rhizosphere. Ann Bot 97:839–855

    PubMed  PubMed Central  Google Scholar 

  • Watt M, Schneebeli K, Dong P, Wilson IW (2009) The shoot and root growth of Brachypodium and its potential as a model for wheat and other cereal crops. Funct Plant Biol 36:960–969

    PubMed  Google Scholar 

  • Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yang Z, Culvenor RA, Haling RE, Stefanski A, Ryan MH, Sandral GA, Kidd DR, Lambers H, Simpson RJ (2017) Variation in root traits associated with nutrient foraging among temperate pasture legumes and grasses. Grass Forage Sci 72:93–103

    Google Scholar 

  • Yu P, Wang C, Baldauf JA, Tai HH, Gutjahr C, Hochholdinger F, Li CJ (2018) Root type and soil phosphate determine the taxonomic landscape of colonizing fungi and the transcriptome of field-grown maize roots. New Phytol 217:1240–1253

    PubMed  CAS  Google Scholar 

  • Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, Shi S, Cho H, Karaoz U, Loqué D, Bowen BP, Firestone MK, Northen TR, Brodie EL (2018) Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol 3:470–480

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan E. Richardson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Richardson, A.E., Kawasaki, A., Condron, L.M., Ryan, P.R., Gupta, V.V.S.R. (2021). Root Microbiome Structure and Microbial Succession in the Rhizosphere. In: Gupta, V.V.S.R., Sharma, A.K. (eds) Rhizosphere Biology: Interactions Between Microbes and Plants. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6125-2_5

Download citation

Publish with us

Policies and ethics