Skip to main content

Microbial–Faunal Interactions in the Rhizosphere

  • Chapter
  • First Online:
Rhizosphere Biology: Interactions Between Microbes and Plants

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

Soils are home for a huge variety of organisms that are profoundly enriched in the rhizosphere. The most abundant ones, microbial bacteria (and to a lesser extent archaea) and fungi, directly compete for plant-derived nutrients that they use for reproduction. Predators of these minute microorganisms control their abundances, community structure and activity. Microbial protists, faunal nematodes and microarthropods are arguably the main bacterial and fungal predators, but also other groups including enchytraeids and even predatory bacteria, fungi and viruses contribute to microbial mortality. In this chapter, we introduce the major predators of microorganisms, their specific interactions with bacteria and fungi, and how predation on microorganisms affects nutrient cycling and eventually plant performance. We focus on protists and nematodes as the key microbial predators. We exemplify how this knowledge helps at better understanding microbial–faunal interactions, and how interactions among those microbial predators affect soil food webs. Overall, we show that the diversity of microbial predators is key to control rhizosphere microbiomes and, eventually, governs plant performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anaid Diaz S, Restif O (2014) Spread and transmission of bacterial pathogens in experimental populations of the nematode Caenorhabditis elegans. Appl Environ Microbiol 80:5411–5418

    PubMed  PubMed Central  Google Scholar 

  • Bal HK, Taylor RAJ, Grewal PS (2014) Ambush foraging entomopathogenic nematodes employ ‘sprinters’ for long-distance dispersal in the absence of hosts. J Parasitol 100:422–432

    PubMed  Google Scholar 

  • Bates ST, Clemente JC, Flores GE, Walters WA, Parfrey LW, Knight R, Fierer N (2013) Global biogeography of highly diverse protistan communities in soil. ISME J 7:652–659

    PubMed  CAS  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    PubMed  CAS  Google Scholar 

  • Berney C, Geisen S, Van Wichelen J, Nitsche F, Vanormelingen P, Bonkowski M, Bass D (2015) Expansion of the ‘Reticulosphere’: diversity of novel branching and network-forming amoebae helps to define Variosea (Amoebozoa). Protist 166:271–295

    PubMed  Google Scholar 

  • Bongers T (1990) The maturity index - an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83:14–19

    PubMed  Google Scholar 

  • Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162:617–631

    Google Scholar 

  • Bonkowski M, Clarholm M (2012) Stimulation of plant growth through interactions of bacteria and protozoa: testing the auxiliary microbial loop hypothesis. Acta Protozool 51:237–247

    Google Scholar 

  • Cameron EK et al (2018) Global gaps in soil biodiversity data. Nat Ecol Evol 2(7):1042–1043

    PubMed  PubMed Central  Google Scholar 

  • Chahartaghi M, Langel R, Scheu S, Ruess L (2005) Feeding guilds in Collembola based on nitrogen stable isotope ratios. Soil Biol Biochem 37:1718–1725

    CAS  Google Scholar 

  • Chakraborty S, Old K (1982) Mycophagous soil amoeba: interactions with three plant pathogenic fungi. Soil Biol Biochem 14:247–255

    Google Scholar 

  • Chakraborty S, Old KM, Warcup JH (1983) Amoebae from a take-all suppressive soil which feed on Gaeumannomyces graminis tritici and other soil fungi. Soil Biol Biochem 15:17–24

    Google Scholar 

  • Christensen S, Griffiths BS, Ekelund F, Rønn R (1992) Huge increase in bacterivores on freshly killed barley roots. FEMS Microbiol Lett 86:303–309

    Google Scholar 

  • Clarholm M (1981) Protozoan grazing of bacteria in soil—impact and importance. Microb Ecol 7:343–350

    PubMed  CAS  Google Scholar 

  • Clarholm M (1985) Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol Biochem 17:181–187

    CAS  Google Scholar 

  • Crotty F, Blackshaw R, Murray P (2011) Tracking the flow of bacterially derived 13C and 15N through soil faunal feeding channels. Rapid Commun Mass Spectrom 25:1503–1513

    PubMed  CAS  Google Scholar 

  • Crotty F, Adl S, Blackshaw R, Murray P (2012) Protozoan pulses unveil their pivotal position within the soil food web. Microb Ecol 63:905–918

    PubMed  CAS  Google Scholar 

  • Danso SKA, Alexander M (1975) Regulation of predation by prey density: the protozoan Rhizobium relationship. Appl Environ Microbiol 29:515–521

    CAS  Google Scholar 

  • de Ruiter PC, Neutel AM, Moore JC (1995) Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269:1257–1260

    PubMed  Google Scholar 

  • Ekelund F (1998) Enumeration and abundance of mycophagous protozoa in soil, with special emphasis on heterotrophic flagellates. Soil Biol Biochem 30:1343–1347

    CAS  Google Scholar 

  • Ettema CH (1998) Soil nematode diversity: species coexistence and ecosystem function. J Nematol 30:159–169

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ferris H, Bongers T, De Goede RGM (2001) A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Appl Soil Ecol 18:13–29

    Google Scholar 

  • Gange A (2000) Arbuscular mycorrhizal fungi, Collembola and plant growth. Trends Ecol Evol 15:369–372

    PubMed  CAS  Google Scholar 

  • Garbeva P, Elsas JD, Veen JA (2008) Rhizosphere microbial community and its response to plant species and soil history. Plant Soil 302:19–32

    CAS  Google Scholar 

  • Geisen S (2016) The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. Soil Biol Biochem 102:22–25

    CAS  Google Scholar 

  • Geisen S, Laros I, Vizcaíno A, Bonkowski M, de Groot GA (2015a) Not all are free-living: high-throughput DNA metabarcoding reveals a diverse community of protists parasitizing soil metazoa. Mol Ecol 24:4556–4569

    PubMed  CAS  Google Scholar 

  • Geisen S, Rosengarten J, Koller R, Mulder C, Urich T, Bonkowski M (2015b) Pack hunting by a common soil amoeba on nematodes. Environ Microbiol 17:4538–4546. https://doi.org/10.1111/1462-2920.12949

    Article  PubMed  CAS  Google Scholar 

  • Geisen S, Tveit AT, Clark IM, Richter A, Svenning MM, Bonkowski M, Urich T (2015c) Metatranscriptomic census of active protists in soils. ISME J 9:2178–2190

    PubMed  PubMed Central  CAS  Google Scholar 

  • Geisen S, Koller R, Hünninghaus M, Dumack K, Urich T, Bonkowski M (2016) The soil food web revisited: diverse and widespread mycophagous soil protists. Soil Biol Biochem 94:10–18

    CAS  Google Scholar 

  • Geisen S et al (2017) Soil protistology rebooted: 30 fundamental questions to start with. Soil Biol Biochem 111:94–103

    CAS  Google Scholar 

  • Geisen S et al (2018) Soil protists: a fertile frontier in soil biology research. FEMS Microbiol Rev 42:293–323

    PubMed  CAS  Google Scholar 

  • Geisen S et al (2019) A methodological framework to embrace soil biodiversity. Soil Biol Biochem 136:107536

    CAS  Google Scholar 

  • Gray NF (1987) Nematophagous fungi with particular reference to their ecology. Biol Rev 62:245–304

    Google Scholar 

  • Griffiths B (1986) Mineralization of nitrogen and phosphorus by mixed cultures of the ciliate protozoan Colpoda steinii, the nematode Rhabditis sp. and the bacterium Pseudomonas fluorescens. Soil Biol Biochem 18:637–641

    CAS  Google Scholar 

  • Griffiths BS (1990) A comparison of microbial-feeding nematodes and protozoa in the rhizosphere of different plants. Biol Fertil Soils 9:83–88

    Google Scholar 

  • Griffiths B, Caul S (1993) Migration of bacterial-feeding nematodes, but not protozoa, to decomposing grass residues. Biol Fertil Soils 15:201–207

    Google Scholar 

  • Grossmann L et al (2016) Protistan community analysis: key findings of a large-scale molecular sampling. ISME J 10:2269–2279

    PubMed  PubMed Central  Google Scholar 

  • Hao Z et al (2018) Arbuscular mycorrhiza affects grapevine fanleaf virus transmission by the nematode vector Xiphinema index. Appl Soil Ecol 129:107–111. https://doi.org/10.1016/j.apsoil.2018.05.007

    Article  Google Scholar 

  • Haubert D, Häggblom MM, Langel R, Scheu S, Ruess L (2006) Trophic shift of stable isotopes and fatty acids in Collembola on bacterial diets. Soil Biol Biochem 38:2004–2007

    CAS  Google Scholar 

  • Hess S, Sausen N, Melkonian M (2012) Shedding light on vampires: the phylogeny of vampyrellid amoebae revisited. PLoS One 7:e31165. https://doi.org/10.1371/journal.pone.0031165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heynen CE, Van Elsas JD, Kuikman PJ, van Veen JA (1988) Dynamics of Rhizobium leguminosarum biovar trifolii introduced into soil; the effect of bentonite clay on predation by protozoa. Soil Biol Biochem 20:483–488

    CAS  Google Scholar 

  • Hodge A, Robinson D, Fitter A (2000) Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci 5:304–308

    PubMed  CAS  Google Scholar 

  • Holterman M et al (2017) Disparate gain and loss of parasitic abilities among nematode lineages. PLoS One 12:e0185445

    PubMed  PubMed Central  Google Scholar 

  • Holtkamp R, Kardol P, van der Wal A, Dekker SC, van der Putten WH, de Ruiter PC (2008) Soil food web structure during ecosystem development after land abandonment. Appl Soil Ecol 39:23–34

    Google Scholar 

  • Horiuchi J-I, Prithiviraj B, Bais HP, Kimball BA, Vivanco JM (2005) Soil nematodes mediate positive interactions between legume plants and rhizobium bacteria. Planta 222:848–857

    PubMed  CAS  Google Scholar 

  • Hunt HW et al (1987) The detrital food web in a shortgrass prairie. Biol Fertil Soils 3:57–68

    Google Scholar 

  • Johnke J, Cohen Y, de Leeuw M, Kushmaro A, Jurkevitch E, Chatzinotas A (2014) Multiple micro-predators controlling bacterial communities in the environment. Curr Opin Biotechnol 27:185–190

    PubMed  CAS  Google Scholar 

  • Jørgensen HB, Elmholt S, Petersen H (2003) Collembolan dietary specialisation on soil grown fungi. Biol Fertil Soils 39:9–15. https://doi.org/10.1007/s00374-003-0674-6

    Article  Google Scholar 

  • Jousset A (2012) Ecological and evolutive implications of bacterial defences against predators. Environ Microbiol 14:1830–1843

    PubMed  Google Scholar 

  • Jousset A, Lara E, Wall LG, Valverde C (2006) Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl Environ Microbiol 72:7083–7090

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jousset A, Rochat L, Pechy-Tarr M, Keel C, Scheu S, Bonkowski M (2009) Predators promote defence of rhizosphere bacterial populations by selective feeding on non-toxic cheaters. ISME J 3:666–674

    PubMed  CAS  Google Scholar 

  • Koller R, Rodriguez A, Robin C, Scheu S, Bonkowski M (2013a) Protozoa enhance foraging efficiency of arbuscular mycorrhizal fungi for mineral nitrogen from organic matter in soil to the benefit of host plants. New Phytol 199:203–211

    PubMed  CAS  Google Scholar 

  • Koller R, Scheu S, Bonkowski M, Robin C (2013b) Protozoa stimulate N uptake and growth of arbuscular mycorrhizal plants. Soil Biol Biochem 65:204–210

    CAS  Google Scholar 

  • Liu T, Yu L, Xu J, Yan X, Li H, Whalen JK, Hu F (2017) Bacterial traits and quality contribute to the diet choice and survival of bacterial-feeding nematodes. Soil Biol Biochem 115:467–474

    Google Scholar 

  • Maharning AR, Mills AAS, Adl SM (2009) Soil community changes during secondary succession to naturalized grasslands. Appl Soil Ecol 41:137–147

    Google Scholar 

  • Mahé F et al (2017) Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat Ecol Evol 1:0091. https://doi.org/10.1038/s41559-017-0091

    Article  Google Scholar 

  • Maraun M, Martens H, Migge S, Theenhaus A, Scheu S (2003) Adding to ‘the enigma of soil animal diversity’: fungal feeders and saprophagous soil invertebrates prefer similar food substrates. Eur J Soil Biol 39:85–95

    Google Scholar 

  • Marschner P (2012) Rhizosphere biology. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press, San Diego, pp 369–388. https://doi.org/10.1016/B978-0-12-384905-2.00015-7

    Chapter  Google Scholar 

  • Michel R, Walochnik J, Scheid P (2014) Article for the “free-living amoebae special issue”: isolation and characterisation of various amoebophagous fungi and evaluation of their prey spectrum. Exp Parasitol 145:S131–S136

    PubMed  Google Scholar 

  • Neher DA, Wu J, Barbercheck ME, Anas O (2005) Ecosystem type affects interpretation of soil nematode community measures. Appl Soil Ecol 30:47–64

    Google Scholar 

  • Neidig N, Jousset A, Nunes F, Bonkowski M, Paul RJ, Scheu S (2010) Interference between bacterial feeding nematodes and amoebae relies on innate and inducible mutual toxicity. Funct Ecol 24:1133–1138

    Google Scholar 

  • Nielsen UN (2019) Soil fauna assemblages. Cambridge University Press, Cambridge

    Google Scholar 

  • O'Connor F (1967) The enchytraeidae. In: Soil biology. Academic Press, New York, pp 213–257

    Google Scholar 

  • Old KM, Oros JM (1980) Mycophagous amoebae in Australian forest soils. Soil Biol Biochem 12:169–175

    Google Scholar 

  • Oliverio AM, Geisen S, Delgado-Baquerizo M, Maestre FT, Turner BL, Fierer N (2020) The global-scale distributions of soil protists and their contributions to belowground systems. Sci Adv 6:eaax8787

    PubMed  PubMed Central  Google Scholar 

  • Orgiazzi A, Bardgett RD, Barrios E (2016) Global soil biodiversity atlas. European Commission, Brussels

    Google Scholar 

  • Page FC (1977) The genus Thecamoeba (Protozoa, Gymnamoebia) species distinctions, locomotive morphology, and protozoan prey. J Nat Hist 11:25–63

    Google Scholar 

  • Petters S, Soellinger A, Bengtsson MM, Urich T (2018) The soil microbial food web revisited with metatranscriptomics - predatory Myxobacteria as keystone taxon? bioRxiv. https://doi.org/10.1101/373365

  • Petz W, Foissner W, Adam H (1985) Culture, food selection and growth rate in the mycophagous ciliate Grossglockneria acuta Foissner, 1980: first evidence of autochthonous soil ciliates. Soil Biol Biochem 17:871–875

    Google Scholar 

  • Petz W, Foissner W, Wirnsberger E, Krautgartner WD, Adam H (1986) Mycophagy, a new feeding strategy in autochthonous soil ciliates. Naturwissenschaften 73:560–562

    Google Scholar 

  • Pollierer MM, Dyckmans J, Scheu S, Haubert D (2012) Carbon flux through fungi and bacteria into the forest soil animal food web as indicated by compound-specific 13C fatty acid analysis. Funct Ecol 26:978–990

    Google Scholar 

  • Porazinska DL, Duncan LW, McSorley R, Graham JH (1999) Nematode communities as indicators of status and processes of a soil ecosystem influenced by agricultural management practices. Appl Soil Ecol 13:69–86

    Google Scholar 

  • Quist CW, Vervoort MTW, Van Megen H, Gort G, Bakker J, Van der Putten WH, Helder J (2014) Selective alteration of soil food web components by invasive giant goldenrod Solidago gigantea in two distinct habitat types. Oikos 123:837–845

    Google Scholar 

  • Quist CW, Smant G, Helder J (2015) Evolution of plant parasitism in the phylum Nematoda. Annu Rev Phytopathol 53:289–310

    PubMed  CAS  Google Scholar 

  • Quist CW, Gort G, Mooijman P, Brus DJ, Van den Elsen S, Kostenko O, Vervoort M, Bakker J, Van der Putten WH, Helder J (2019) Spatial distribution of soil nematodes relates to soil organic matter and life strategy. Soil Biol Biochem 136:107542

    Google Scholar 

  • Ramirez C, Alexander M (1980) Evidence suggesting protozoan predation on Rhizobium associated with germinating seeds and in the rhizosphere of beans (Phaseolus vulgaris L.). Appl Environ Microbiol 40:492–499

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ramirez KS, Geisen S, Morriën E, Snoek BL, van der Putten WH (2018) Network analyses can advance above-belowground ecology. Trends Plant Sci 23:759–768

    PubMed  CAS  Google Scholar 

  • Rønn R, Vestergård M, Ekelund F (2012) Interactions between bacteria, protozoa and nematodes in soil. Acta Protozool 51:223–235

    Google Scholar 

  • Rosenberg K, Bertaux J, Krome K, Hartmann A, Scheu S, Bonkowski M (2009) Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana. ISME J 3:675–684

    PubMed  CAS  Google Scholar 

  • Ruess L, Dighton J (1996) Cultural studies on soil nematodes and their fungal hosts. Nematologica 42:330–346

    Google Scholar 

  • Rusek J (1998) Biodiversity of Collembola and their functional role in the ecosystem. Biodivers Conserv 7:1207–1219

    Google Scholar 

  • Sabatini MA, Innocenti G (2001) Effects of Collembola on plant-pathogenic fungus interactions in simple experimental systems. Biol Fertil Soils 33:62–66

    Google Scholar 

  • Sayre RM (1973) Theratromyxa weberi, an amoeba predatory on plant-parasitic nematodes. J Nematol 5:258–264

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schratzberger M, Holterman M, van Oevelen D, Helder J (2019) A worm’s world: ecological flexibility pays off for free-living nematodes in sediments and soils. Bioscience 69:867–876

    PubMed  PubMed Central  Google Scholar 

  • Schulz-Bohm K, Geisen S, Wubs ERJ, Song C, de Boer W, Garbeva P (2017) The prey’s scent - volatile organic compound mediated interactions between soil bacteria and their protist predators. ISME J 11:817–820

    PubMed  CAS  Google Scholar 

  • Seppey CVW, Singer D, Dumack K, Fournier B, Belbahri L, Mitchell EAD, Lara E (2017) Distribution patterns of soil microbial eukaryotes suggests widespread algivory by phagotrophic protists as an alternative pathway for nutrient cycling. Soil Biol Biochem 112:68–76

    CAS  Google Scholar 

  • Shah P, Pell J (2003) Entomopathogenic fungi as biological control agents. Appl Microbiol Biotechnol 61:413–423

    PubMed  CAS  Google Scholar 

  • Siddiqui Z, Mahmood I (1999) Role of bacteria in the management of plant parasitic nematodes: a review. Bioresour Technol 69:167–179

    CAS  Google Scholar 

  • Taylor CE, Brown DJF (1997) Nematode vectors of plant viruses. CAB International, Wallingford

    Google Scholar 

  • van den Hoogen J et al (2019) Soil nematode abundance and functional group composition at a global scale. Nature 572:194–198

    PubMed  Google Scholar 

  • Waldrop MP et al (2012) Bacterial and enchytraeid abundance accelerate soil carbon turnover along a lowland vegetation gradient in interior Alaska. Soil Biol Biochem 50:188–198

    CAS  Google Scholar 

  • Xiong W et al (2018) Soil protist communities form a dynamic hub in the soil microbiome. ISME J 12:634–638

    PubMed  Google Scholar 

  • Xiong W et al (2020) Rhizosphere protists are key determinants of plant health. Microbiome 8:27

    PubMed  PubMed Central  Google Scholar 

  • Yeates GW, Foissner W (1995) Testate amoebae as predators of nematodes. Biol Fertil Soils 20:1–7

    Google Scholar 

  • Yeates GW, Bongers T, De Goede RGM, Freckman DW, Georgieva SS (1993) Feeding-habits in soil nematode families and genera - an outline for soil ecologists. J Nematol 25:315–331

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zimmermann G (1986) The ‘Galleria bait method’ for detection of entomopathogenic fungi in soil. J Appl Entomol 102:213–215

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Geisen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Geisen, S., Quist, C.W. (2021). Microbial–Faunal Interactions in the Rhizosphere. In: Gupta, V.V.S.R., Sharma, A.K. (eds) Rhizosphere Biology: Interactions Between Microbes and Plants. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6125-2_12

Download citation

Publish with us

Policies and ethics