Skip to main content

A Survey on Partially Occluded Faces

  • Conference paper
  • First Online:
Evolutionary Computing and Mobile Sustainable Networks

Abstract

Over the past decade, partially occluded face recognition has been an urgent challenge to computer visionaries due to conditions, which appear unconstrained. The main aim of the facial recognition system is to attain the ability to detect partially occluded regions of an individual’s face and authenticating/verifying that face. There are existing neural networks that are proven to be perfect on analysing the patterns for constrained looks but fail to perform in analysing partially occluded faces that are common in the real world. The paper discusses the trainable Deep Learning Neural Network (DLNN) for partially occluded faces by recognizing all the possible faces in the image, either resting, posing or projecting faces and matching them across the trained datasets of DLNN and encoding the identified faces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cornejo JY, Pedrini H (2016) Recognition of occluded facial expressions based on CENTRIST features. In: 2016 IEEE international conference on acoustics, speech and signal processing (ICASSP), Shanghai, 2016, Clerk Maxwell J, A Treatise on Electricity and Magnetism, 3rd ed., vol 2. Oxford: Clarendon, 1892, pp 68–73

    Google Scholar 

  2. Shin J, Kim D (2014) Hybrid approach for facial feature detection and tracking under occlusion. IEEE Signal Processing Letters, 21(12):1486–1490

    Google Scholar 

  3. Hongxing S, Jiayi W, Peng S, Xiaoyang Z (2013) Facial area forecast and occluded face detection based on the YCbCr elliptical model. In: Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC), Shengyang, 2013. R. Nicole, “Title of paper with only first word capitalized,” J. Name Stand. Abbrev., in press

    Google Scholar 

  4. Ramìrez Cornejo JY, Pedrini H (2018) Emotion Recognition from Occluded Facial Expressions Using Weber Local Descriptor. In: 2018 25th International Conference on Systems, Signals and Image Processing (IWSSIP), Maribor, 2018

    Google Scholar 

  5. Young M (1989) The Technical Writer’s Handbook. University Science, Mill Valley, CA

    Google Scholar 

  6. Aisha Azeem, Muhammad Sharif, “Survey of Face Recognition Techniques under Partial Occlusion”, The International Arab Journal of Information Technology, Vol. 11, No. 1, January 2014

    Google Scholar 

  7. Tanvi B. Patel, Prof. Jalpa T. Patel “Occlusion Detection and Recognizing Human Face using Neural Network” IEEE 2017

    Google Scholar 

  8. Rohit Tayade “Occlusion Detection Prior To Face Recognition Using Structural Feature Extraction” International Conference on Intelligent Computing and Control Systems (ICICCS), IEEE 2017International Conference on Intelligent Computing and Control Systems (ICICCS), IEEE2017

    Google Scholar 

  9. Chen YA, Chen WC, Wei CP, Wang YC (2017) Occlusion-aware face inpainting via generative adversarial networks. IEEE

    Google Scholar 

  10. Deng-Yuan Huang, Chao-Ho Chen, Tsong-Yi Chen, Jian-He Wu, ChienChuanKo” Real-Time Face Detection Using a Moving Camera” 201832nd International Conference on Advanced Information Networking and Applications Workshops, IEEE 2018

    Google Scholar 

  11. Ashwin Khadatkar, Roshni Khedgaonkar, K.S.Patnaik “Occlusion InvariantFace Recognition System”, 2016 world Conference on FuturisticTrends in Research and Innovation for Social Welfare(WCFTR’16), IEEE 2016

    Google Scholar 

  12. Hua Wang, Xin Gu, Xiao Li, Zhe Li, Jun Ni “Occluded Face Detection Based on Adaboost Technology” 2015 Eighth International Conference on Internet Computing for Science and Engineering, IEEE2015

    Google Scholar 

  13. M.P. Satone, K.K. Wagh Face detection and recognition in color images” IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011

    Google Scholar 

  14. Foram Shah, Chandni Sharma, Shreya Patel, Abhishek More “Review of Face Detection based on Color Image and Binary Image “International Journal of Computer Applications (0975–8887) Volume 134 – No.1, January 2016

    Google Scholar 

  15. Asthana A, Zafeiriou S, Cheng S, Pantic M (2013) Robust discriminative response map fitting with constrained local models. In IEEE Conference on Computer Vision and Pattern Recognition, pp 3444–3451

    Google Scholar 

  16. Kepenekci B, Tek FB, Akar GB (2002) Occluded face recognition based on Gabor wavelets. In: Proceedings. International Conference on Image Processing, Rochester, NY, USA, pp I–I

    Google Scholar 

  17. Chen J, Shan S, Yang S, Chen X, Gao W (2006) Modification of the adaboost-based detector for partially occluded faces. In: 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, pp 516–519

    Google Scholar 

  18. Wu G, Tao J, Xu X (2019) Occluded Face Recognition Based on the Deep Learning. In: 2019 Chinese Control and Decision Conference (CCDC), Nanchang, China, 2019, pp 793–797

    Google Scholar 

  19. Charoenpong T, Nuthong C, Watchareeruetai U (2014) A new method for occluded face detection from single viewpoint of head. In: 2014 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Nakhon Ratchasima, pp 1–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. T. Chetana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Athreya, S.M., Shreevari, S.P., Aradhya Siddesh, B.S., Kiran, S., Chetana, H.T. (2021). A Survey on Partially Occluded Faces. In: Suma, V., Bouhmala, N., Wang, H. (eds) Evolutionary Computing and Mobile Sustainable Networks. Lecture Notes on Data Engineering and Communications Technologies, vol 53. Springer, Singapore. https://doi.org/10.1007/978-981-15-5258-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5258-8_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5257-1

  • Online ISBN: 978-981-15-5258-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics