Skip to main content

Abstract

Metal powders (mainly aluminum), due to their high energy density, are important fuels for propulsion systems, material synthesis, and energetic materials. However, the use of aluminum is complicated by the fact that during storage and combustion on the surface of the particles an inert oxide layer is formed, which prevents the access of an oxidizer and increases the ignition and burning times of particles. Prospective solution to the problem of increasing the efficiency of metal fuel combustion is the complete or partial replacement of aluminum by energy-intensive components or Al/Mg alloys in energetic materials. This chapter presents the thermal analysis data, the ignition parameters, the combustion, and agglomeration characteristics for the propellants based on ammonium perchlorate, butadiene rubber, and Alex, Alex/Fe, Alex/B ultra-fine powders. The experimental results showed the reduction of the ignition delay time and increase of the burning rate for the EM sample containing Alex/Fe ultra-fine powder in comparison with the Al-based energetic material. The presence of amorphous boron in the bimetal fuel of EM significantly increases the agglomeration of condensed combustion products and practically maintains the burning rate of propellant unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beckstead MW, Puduppakkama K, Thakreb P, Yang V (2007) Modeling of combustion and ignition of solid-propellant ingredients. Prog Energy Combust Sci 33(6):497–551. https://doi.org/10.1016/j.pecs.2007.02.003

    Article  CAS  Google Scholar 

  2. Kohga M, Okamoto K (2011) Thermal decomposition behaviors and burning characteristics of ammonium nitrate/polytetrahydrofuran/glycerin composite propellant. Combust Flame 158(3):573–582. https://doi.org/10.1016/j.combustflame.2010.10.009

    Article  CAS  Google Scholar 

  3. Arkhipov VA, Korotkikh AG (2012) The influence of aluminum powder dispersity on composite solid propellants ignitability by laser radiation. Combust Flame 159(1):409–415. https://doi.org/10.1016/j.combustflame.2011.06.020

    Article  CAS  Google Scholar 

  4. DeLuca L, Cozzi F, Germiniasi G, Ley I, Zenin AA (1999) Combustion mechanism of an RDX-based composite propellant. Combust Flame 118(1):248–261. https://doi.org/10.1016/S0010-2180(98)00148-5

    Article  Google Scholar 

  5. Takahashi K, Oide Sh, Kuwahara T (2013) Agglomeration characteristics of aluminum particles in AP/AN composite propellants. Propell Explos Pyrot 38(4):555–562. https://doi.org/10.1002/prep.201200187

    Article  CAS  Google Scholar 

  6. Muravyev N, Frolov Y, Pivkina A, Monogarov K, Ordzhonikidze O, Bushmarinov I, Korlyukov A (2010) Influence of particle size and mixing technology on combustion of HMX/Al compositions. Propell Explos Pyrot 35(3):226–232. https://doi.org/10.1002/prep.201000028

    Article  CAS  Google Scholar 

  7. Glotov OG (2006) Condensed combustion products of aluminized propellants. IV. Effect of the nature of nitramines on aluminum agglomeration and combustion efficiency. Combust Explo Shock 42(4):436–449

    Google Scholar 

  8. Hedman TD, Groven LJ, Lucht RP, Son SF (2013) The effect of polymeric binder on composite propellant flame structure investigated with 5 kHz OH PLIF. Combust Flame 160(8):1531–1540. https://doi.org/10.1016/j.combustflame.2013.02.020

    Article  CAS  Google Scholar 

  9. Arkhipov VA, Bondarchuk SS, Korotkikh AG, Kuznetsov VT, Gromov AA, Volkov SA, Revyagin LN (2012) Influence of aluminum particle size on ignition and nonstationary combustion of heterogeneous condensed systems. Combust Explo Shock 48(5):625–635. https://doi.org/10.1134/S0010508212050140

  10. Arkhipov VA, Korotkikh AG, Kuznetsov VT, Razdobreev AA, Evseenko IA (2011) Influence of the dispersity of aluminum powder on the ignition characteristics of composite formulations by laser radiation. Russ J Phys Chem B 5(4):616–624. https://doi.org/10.1134/S1990793111040026

  11. Komarova MV, Komarov VF, Vakutin AG, Yaschenko AV (2010) Effect of nanosize bimetallic particles on the combustion characteristics of composite propellant. Polzunovsky Vestnik 4:112–116

    Google Scholar 

  12. Hedman TD, Reese DA, Cho KY, Groven LJ, Lucht RP, Son SF (2012) An experimental study of the effects of catalysts on an ammonium perchlorate based composite propellant using 5 kHz PLIF. Combust Flame 159(4):1748–1758. https://doi.org/10.1016/j.combustflame.2011.11.014

    Article  CAS  Google Scholar 

  13. Arkhipov VA, Bondarchuk SS, Korotkikh AG (2010) Comparative analysis of methods for measuring the transient burning rate. II. Research results. Combust Explo Shock 46(5):570–577. https://doi.org/10.1007/s10573-010-0075-8

  14. Shioya S, Kohga M, Naya T (2014) Burning characteristics of ammonium perchlorate-based composite propellant supplemented with diatomaceous earth. Combust Flame 161(2):620–630. https://doi.org/10.1016/j.combustflame.2013.09.019

    Article  CAS  Google Scholar 

  15. Ishitha K, Ramakrishna PA (2014) Studies on the role of iron oxide and copper chromite in solid propellant combustion. Combust Flame 161(10):2717–2728. https://doi.org/10.1016/j.combustflame.2014.03.015

    Article  CAS  Google Scholar 

  16. Farley CW, Pantoya ML, Levitas VI (2014) A mechanistic perspective of atmospheric oxygen sensitivity on composite energetic material reactions. Combust Flame 161(4):1131–1134. https://doi.org/10.1016/j.combustflame.2013.10.018

    Article  CAS  Google Scholar 

  17. Arkhipov VA, Korotkikh AG, Gromov AA, Kuznetsov VT, Pesterev AV, Evseenko IA (2011) Effect of catalytic additives of metal powders on the high energy materials ignition. Russ Phys J 54:299–306

    Google Scholar 

  18. McDonald BA, Rice RJ, Kirkham MW (2014) Humidity induced burning rate degradation of an iron oxide catalyzed ammonium perchlorate/HTPB composite propellant. Combust Flame 161(1):363–369. https://doi.org/10.1016/j.combustflame.2013.08.014

    Article  CAS  Google Scholar 

  19. Berner MK, Talawar MB, Zarko VE (2013) Nanoparticles of energetic materials: synthesis and properties (Review). Combust Explo Shock 49(6):625–647. https://doi.org/10.1134/S0010508213060014

  20. Arkhipov VA, Kiskin AB, Zarko VE, Korotkikh AG (2014) Laboratory method for measurement of the specific impulse of solid propellants. Combust Explo Shock 50(5):622–624. https://doi.org/10.1134/S0010508214050177

  21. Sakovich GV, Arkhipov VA, Vorozhtsov AB, Korotkikh AG (2009) Solid rocket propellants based on the dual oxidizer containing the aluminum ultra-fine powder. Bull Tomsk Polytech Univ 314:18–22

    Google Scholar 

  22. Komarov VF, Komarova MV, Vorozhtsov AB, Lerner MI, Domashenko VV (2013) Processes proceeding in high-energy systems comprising nanodimensional aluminum and other nanometals. Russ Phys J 56(4):365–369. https://doi.org/10.1007/s11182-013-0043-3

    Article  CAS  Google Scholar 

  23. Arkhipov VA, Gorbenko TI, Gorbenko MV, Pesterev AV, Savel’eva LA (2012) Effect of catalytic additives and aluminum particle size on the combustion of mixed compositions with a chlorine-free oxidizer. Combust Explo Shock 48(5):642–649. https://doi.org/10.1134/S0010508212050164

  24. Sippel TR, Son SF, Groven LJ (2014) Aluminum agglomeration reduction in a composite propellant using tailored Al/PTFE particles. Combust Flame 161(1):311–321. https://doi.org/10.1016/j.combustflame.2013.08.009

    Article  CAS  Google Scholar 

  25. Sossi A, Duranti E, Manzoni M, Paravan C, DeLuca LT, Vorozhtsov AB, Lerner MI, Rodkevich NV, Gromov AA, Savin EN (2013) Combustion of HTPB-based solid fuels loaded with coated nanoaluminum. Combust Sci Technol 185:17–36. https://doi.org/10.1080/00102202.2012.707261

    Article  CAS  Google Scholar 

  26. Aly Y, Schoenitz M, Dreizin EL (2013) Ignition and combustion of mechanically alloyed Al-Mg powders with customized particle sizes. Combust Flame 160(4):835–842. https://doi.org/10.1016/j.combustflame.2012.12.011

    Article  CAS  Google Scholar 

  27. Shohin YuL, Mudryy RS, Dreizin EL (2002) Preparation and characterization of energetic Al-Mg mechanical alloy powders. Combust Flame 128(3):259–269. https://doi.org/10.1016/S0010-2180(01)00351-0

    Article  Google Scholar 

  28. Hori K, Glotov OG, Zarko VE, Habu H, Faisal AMM, Fedotova TD (2002) Study of the combustion residues for Mg/Al solid propellant. In: 33rd international annual conference of ICT on energetic materials—synthesis, production and application, Fraunhofer

    Google Scholar 

  29. Glotov OG, Simonenko VN, Zarko VE, Tukhtaev RK, Grigoryeva TF, Fedotova TD (2004) Combustion characteristics of propellants containing aluminum-boron mechanical alloy. In: 35th international annual conference of ICT on energetic materials—structure and properties, Fraunhofer

    Google Scholar 

  30. Glotov OG, Zarko VE, Simonenko VN, Fedotova TD, Tukhtaev RK, Grigoryeva TF (2005) Effect of Al/B mechanical alloy on combustion characteristics of AP/HMX/energetic binder propellants. In: 36th international annual conference of ICT and 32nd international pyrotechnics seminar in energetic materials—performance and safety, Fraunhofer

    Google Scholar 

  31. Glotov OG, Yagodnikov DA, Vorob’ev VS, Zarko VE, Simonenko VN (2007) Ignition, combustion, and agglomeration of encapsulated aluminum particles in a composite solid propellant. II. Experimental studies of agglomeration. Combust Explo Shock 43(3):320–333. https://doi.org/10.1007/s10573-007-0045-y

  32. Ivanov YF, Osmonoliev MN, Sedoi VS, Arkhipov VA, Bondarchuk SS, Vorozhtsov AB, Korotkikh AG, Kuznetsov VT Productions of ultra-fine powders and their use in high energetic compositions. Propell Explos Pyrot 28(6):319–333. https://doi.org/10.1002/prep.200300019

  33. Gromov A, Teipel U (2014) Metal nanopowders: production, characterization, and energetic applications, Wiley Blackwell. https://doi.org/10.1002/9783527680696.ch8

  34. Pokhil PF, Belyaev AF, Frolov YV, Logachev VS, Korotkov AI (1972) Combustion of powdered metals in active media. Science, Moscow

    Google Scholar 

  35. Gromov AA, Korotkikh AG, Il’in AP, DeLuca LT, Arkhipov VA, Monogarov KA, Teipel U (2016) Nanometals: synthesis and application in energetic systems, energetic nanomaterials: synthesis, characterization, and application (Zarko VE, Gromov AA, Eds). Elsevier Inc, pp 47–63

    Google Scholar 

  36. Komarova MV, Komarov VF, Vakutin AG, Yashenko AV (2010) The influence of nanosized bimetallic particles on combustion characteristic of composite propellant. Polzunovskiy Vestnik 4:112–116

    Google Scholar 

  37. Arkhipov VA, Korotkikh AG, Kuznetsov VT, Sinogina ES (2007) Influence of metal powders dispersity on characteristics of conductive and radiant ignition of mixed compositions. Russ J Phys Chem B 26:58–67

    Google Scholar 

  38. Liu L, Li F, Tan L, Ming L, Yi Y (2004) Effects of nanometer Ni, Cu, Al and NiCu powders on the thermal decomposition of ammonium perchlorate. Propell Explos Pyrot 29(1):34–38. https://doi.org/10.1002/prep.200400026

    Article  CAS  Google Scholar 

  39. Gromov A, Strokova Y, Kabardin A, Vorozhtsov A, Teipel U (2009) Experimental study of the effect of metal nanopowders on the decomposition of HMX, AP and AN. Propell Explos Pyrot 34(6):506–512. https://doi.org/10.1002/prep.200800030

    Article  CAS  Google Scholar 

  40. Li F-S, Jiang W, Liu J, Guo X-D, Wang Y-J, Hao G-Z Applications of nanocatalysts in solid rocket propellants. In: Energetic Nanomaterials: Synthesis, Characterization, and Application (Zarko VE, Gromov AA, Eds), Elsevier Inc. pp 95–120

    Google Scholar 

  41. Gany A, Timnat YM (1993) Advantages and drawbacks of boron-fueled propulsion. Acta Astronaut 29(3):181–187

    Article  Google Scholar 

  42. Korotkikh AG, Arkhipov VA, Glotov OG, Slyusarskiy KV (2015) Combustion and agglomeration of aluminized high-energy compositions. In: IOP conference series: materials science and engineering 93:012032-1–6. https://doi.org/10.1088/1757-899X/93/1/012032

  43. Korotkikh AG, Glotov OG, Arkhipov VA, Kiskin AB, Zarko VE (2017) Effect of iron and boron ultrafine powders on combustion of aluminized solid propellants. Combust Flame 178:195–204. https://doi.org/10.1016/j.combustflame.2017.01.004

    Article  CAS  Google Scholar 

  44. Glotov OG, Korotkikh AG, Arkhipov VA, Kiskin AB, Zarko VE, Zhitnitsky ON, Surodin GS (2015) Condensed combustion products of solid propellant with boron additive. In: 46th international annual conference of ICT on energetic materials—performance, safety and system applications, Fraunhofer, pp 123-1–123-12

    Google Scholar 

  45. Zarko VE, Glotov OG (2013) Formation of Al oxide particles in combustion of aluminized condensed systems (Review). Sci Technol Energ Ma 74(5):139–143

    CAS  Google Scholar 

  46. Connell TL, Risha GA, Yetter RA, Roberts CW, Young G (2015) Boron and polytetrafluoroethylene as a fuel composition for hybrid rocket applications. J Propul Power 31(1):373–385. https://doi.org/10.2514/1.B35200

    Article  CAS  Google Scholar 

  47. Liu P-J, Liu L-L, He G-Q (2016) Effect of solid oxidizers on the thermal oxidation and combustion performance of amorphous boron. J Therm Anal Calorim 124(3):1587–1593. https://doi.org/10.1007/s10973-016-5252-x

    Article  CAS  Google Scholar 

  48. Fedotova TD, Glotov OG, Zarko VE (2000) Chemical analysis of aluminum as a propellant ingredient and determination of aluminum and aluminum nitride in condensed combustion products. Propell Explos Pyrot 25(1):325–332. https://doi.org/10.1007/BF00755960

    Article  CAS  Google Scholar 

  49. Babuk VA, Vasilyev VA, Malachov MS (1999) Condensed combustion products at the burning surface of aluminized solid propellant. J Propul Power 15:783–793

    Article  CAS  Google Scholar 

  50. Fedotova TD, Glotov OG, Zarko VE (2007) Application of cerimetric methods for determining the metallic aluminum content in ultrafine aluminum powders. Propell Explos Pyrot 32(2):160–164. https://doi.org/10.1002/prep.200700017

    Article  CAS  Google Scholar 

  51. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520(1–2):1–19. https://doi.org/10.1016/j.tca.2011.03.034

    Article  CAS  Google Scholar 

  52. Trusov BG (2012) Code system for simulation of phase and chemical equilibriums at higher temperatures. Eng J Sci Innov 1:21–30. https://doi.org/10.18698/2308-6033-2012-1-31

  53. Korotkikh AG, Arkhipov VA, Glotov OG, Kiskin AB, Zarko VE (2015) Effect of iron powder on ignition and combustion characteristics of composite solid propellants. Russ J Chem Phys Mesoscopy 1(17):12–22

    Google Scholar 

  54. Korotkikh AG, Arkhipov VA, Glotov OG, Kiskin AB (2016) Effect of metal additives on the thermal decomposition and ignition of composite solid propellants with Alex. In: 47th international annual conference of ICT on energetic materials—synthesis, characterization, processing. Fraunhofer, pp 133-1–133-9

    Google Scholar 

  55. Korotkikh AG, Arkhipov VA, Ditts AA, Yankovskiy SA (2014) Influence of powder additives of titanium, boron ad iron on the energy characteristics of heterogeneous condensed systems. Russ Phys J 9–3:108–113

    Google Scholar 

  56. Glotov OG, Zarko VE, Karasev VV, Fedotova TD, Rychkov AD (2003) Macrokinetics of combustion of monodisperse agglomerates in the flame of a model solid propellant. Combust Explo Shock 39(5):552–562. https://doi.org/10.1023/A:1026113902771

  57. Glotov OG, Zhukov VA (2008) The evolution of 100-μm aluminum agglomerates and initially continuous aluminum particles in the flame of a model solid propellant. II. Results. Combust Explo Shock 44(6):671–680. https://doi.org/10.1007/s10573-008-0101-2

  58. Suzuki S (1989) Chiba M, Combustion efficiency of aluminized propellants. AIAA Meeting Papers 89–2309:1–8

    Google Scholar 

  59. Glotov OG (2002) Condensed combustion products of aluminized propellants. III. Effect of an inert gaseous combustion environment. Combust Explo Shock 38(1):92–100. https://doi.org/10.1023/A:1014018303660

Download references

Acknowledgments

The reported study was supported by RFBR according to the research project No. 19-33-90015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander G. Korotkikh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korotkikh, A.G., Glotov, O.G., Sorokin, I.V., Arkhipov, V.A. (2020). Bimetal Fuels for Energetic Materials. In: Pang, W., DeLuca, L., Gromov, A., Cumming, A. (eds) Innovative Energetic Materials: Properties, Combustion Performance and Application. Springer, Singapore. https://doi.org/10.1007/978-981-15-4831-4_7

Download citation

Publish with us

Policies and ethics