Skip to main content

A Deep-Learning Based Worker’s Pose Estimation

  • Conference paper
  • First Online:
Frontiers of Computer Vision (IW-FCV 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1212))

Included in the following conference series:

Abstract

Work in a factory is physically demanding. It requires workers to perform tasks in different awkward positions. Thus, long work shifts might have prolonged effects on workers’ physical health. To minimize the risks, we introduce an automatic workers’ pose estimation system, which will calculate a worker’s body angle and indicate which angles are safe or not safe for performing tasks in various work places. By combining CMU OpenPose with body assessment tools, such as Rapid Entire Body Assessment (REBA) and Rapid Upper Limb Assessment (RULA), the proposed system automatically determines a worker’s risk pose. This method, intended to replace a manual analysis of work posture, will help build safer environments for workers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arndt, C., Robinson, S., Tarp, F.: Parameter estimation for a computable general equilibrium model: a maximum entropy approach. Econ. Model. 19(3), 375–398 (2002)

    Article  Google Scholar 

  2. Straker, L., Campbell, A., Coleman, J., Ciccarelli, M., Dankaerts, W.: In vivo laboratory validation of the physiometer: a measurement system for long-term recording of posture and movements in the workplace. Ergonomics 53(5), 672–684 (2010). https://doi.org/10.1080/00140131003671975

    Article  Google Scholar 

  3. McAtamney, L., et al.: RULA: a survey method for the investigation of world-related upper limb disorders. Appl. Ergon. 24, 91–99 (1993)

    Article  Google Scholar 

  4. Hignett, S., McAtamney, L.: REBA: a survey method for the investigation of work-related upper limb disorders. Appl. Ergon. (2000)

    Google Scholar 

  5. Zaheer, A. et al.: Ergonomics: a work place realities in Pakistan. Int. Posture J. Sci. Technol. 2(1), (2012)

    Google Scholar 

  6. Dieёn, J.H.V., Hoozemans, M.J.M., Toussaint, H.M.: Stoop or squat: a review of biomechanical studies on lifting technique. Clin. Biomech. 14(10), 685–696 (1999)

    Article  Google Scholar 

  7. Umer, W., Li, H., Szeto, G.P.Y., Wong, A.Y.L.: Identification of biomechanical risk factors for the development of lower-back disorders during manual rebar tying. J. Constr. Eng. Manage. 143(1), 04016080 (2016)

    Article  Google Scholar 

  8. Jiayu, C., Jun, Q., Changbum, A.: Construction worker’s awkward posture recognition through supervised motion tensor decomposition. Autom. Constr. 77, 67–81 (2017)

    Article  Google Scholar 

  9. Osmo, K., Kansi, P., Kuorinka, I.: Correcting working postures in industry: a practical method for analysis. Appl. Ergon. 8(4), 199–201 (1977)

    Article  Google Scholar 

  10. Delleman, N., Boocock, M., Kapitaniak, B., Schaefer, P., Schaub, K.: ISO/FDIS 11226: evaluation of static working postures. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting vol. 44, no. 35, pp. 442–443 (2000)

    Google Scholar 

  11. Delleman, N.J., Dul, J.: International standards on working postures and movements ISO 11226 and EN 1005-4. Ergonomics 50(11), 1809–1819 (2007)

    Article  Google Scholar 

  12. Xinming, L., Han, S., Gül, M., Al-Hussein, M., El-Rich, M.: 3D visualization-based ergonomic risk assessment and work modification framework and its validation for a lifting task. J. Constr. Eng. Manag. 144(1), 04017093 (2017)

    Google Scholar 

  13. Golabchi, A., Han, S., Seo, J., Han, S., Lee, S., Al-Hussein, M.: An automated biomechanical simulation approach to ergonomic job analysis for workplace design. J. Constr. Eng. Manage. 141(8), 04015020 (2015)

    Article  Google Scholar 

  14. Felzenszwalb, P.F., Huttenlocher, D.P.: Pictorial structures for object recognition. Int. J. Comput. Vis. 61, 55–79 (2005). https://doi.org/10.1023/B:VISI.0000042934.15159.49

    Article  Google Scholar 

  15. Ramanan, D., Forsyth, D.A., Zisserman, A.: Strike a pose: tracking people by finding stylized poses. In: CVPR (2005)

    Google Scholar 

  16. Andriluka, M., Roth, S., Schiele, B.: Monocular 3D pose estimation and tracking by detection. In: CVPR (2010)

    Google Scholar 

  17. Wang, Y., Mori, G.: Multiple tree models for occlusion and spatial constraints in human pose estimation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 710–724. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88690-7_53

    Chapter  Google Scholar 

  18. Sigal, L., Black, M.J.: Measure locally, reason globally: occlusion-sensitive articulated pose estimation. In: CVPR (2006)

    Google Scholar 

  19. Lan, X., Huttenlocher, D.P.: Beyond trees: common-factor models for 2D human pose recovery. In: ICCV (2005)

    Google Scholar 

  20. Karlinsky, L., Ullman, S.: Using linking features in learning non-parametric part models. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 326–339. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_24

    Chapter  Google Scholar 

  21. Tompson, J.J., Jain, A., LeCun, Y., Bregler, C.: Joint training of a convolutional network and a graphical model for human pose estimation. In: NIPS (2014)

    Google Scholar 

  22. Pfister, T., Charles, J., Zisserman, A.: Flowing convnets for human pose estimation in videos. In: ICCV (2015)

    Google Scholar 

  23. Wei, S.-E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: CVPR (2016)

    Google Scholar 

  24. He, K., Gkioxari, G., Doll´ar, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  25. Fang, H.-S., Xie, S., Tai, Y.-W., Lu, C.: RMPE: regional multiperson pose estimation. In: ICCV (2017)

    Google Scholar 

  26. Papandreou, G., et al: Towards accurate multi-person pose estimation in the wild. In: CVPR (2017)

    Google Scholar 

  27. Chen, Y., Wang, Z., Peng, Y., Zhang, Z., Yu, G., Sun, J.: Cascaded pyramid network for multi-person pose estimation. In: CVPR (2018)

    Google Scholar 

  28. Xiao, B., Wu, H., Wei, Y.: Simple Baselines for Human Pose Estimation and Tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 472–487. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_29

    Chapter  Google Scholar 

  29. Pishchulin, L., et al: Deepcut: joint subset partition and labeling for multi person pose estimation. In: CVPR (2016)

    Google Scholar 

  30. Zhang, H., Yan, X., Li, H.: Ergonomic posture recognition using 3D view-invariant features from single ordinary camera. Autom. Constr. 94, 1–10 (2018)

    Article  Google Scholar 

  31. Cao, Z., et al.: Realtime multi-person 2D pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  32. Yan, X., et al.: Development of ergonomic posture recognition technique based on 2D ordinary camera for construction hazard prevention through view-invariant features in 2D skeleton motion. Adv. Eng. Inf. 34, 152–163 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by Basic Science Research Program through the National research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07047936).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabesh Paudel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paudel, P., Choi, KH. (2020). A Deep-Learning Based Worker’s Pose Estimation. In: Ohyama, W., Jung, S. (eds) Frontiers of Computer Vision. IW-FCV 2020. Communications in Computer and Information Science, vol 1212. Springer, Singapore. https://doi.org/10.1007/978-981-15-4818-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4818-5_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4817-8

  • Online ISBN: 978-981-15-4818-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics