Skip to main content

Potato Modeling

  • Chapter
  • First Online:
Systems Modeling

Abstract

Potato (Solanum tuberosum) is the most significant food crop next to rice and wheat. Climate change could exert critical influences on supply of food; consequently, key challenge for modern agriculture is to develop approaches to handle its harmful impacts for confirming food security by 2050 as well as afterward. Climate variability in the form of higher temperature, rainfall variability, and increased frequency of drought have shown significant impact on potato production. Thus, it is essential to design adaptation strategies that can mitigate influence of climate change for long-term basis. Different process-based models such as Decision Support System for Agrotechnology Transfer (DSSAT), Agricultural Production Systems Simulator (APSIM), CropSyst (CropSyst VB–Simpotato), and STICS (Simulateur mulTIdisciplinaire pour les Cultures Standard) have shown great potential to develop sustainable agronomic practices as well as virtual potato cultivars to have good potato crop for future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed M (2020) Introduction to modern climate change. Andrew E. Dessler: Cambridge University Press, 2011, 252 pp, ISBN-10: 0521173159. Sci Total Environ 734:139397. https://doi.org/10.1016/j.scitotenv.2020.139397

  • Alva A, Marcos J, Stockle C, Reddy V, Timlin D (2004) CropSyst VB–Simpotato, a crop simulation model for potato-based cropping systems: II. Evaluation of nitrogen dynamics. In: Proceedings of the 4th International Crop Science Congress, Brisbane, Australia, 2004

    Google Scholar 

  • Brown HE, Huth N, Holzworth D (2011) A potato model build using the APSIM Plant. NET framework, pp 961–967

    Google Scholar 

  • Brown HE, Huth NI, Holzworth DP, Teixeira EI, Zyskowski RF, Hargreaves JNG, Moot DJ (2014) Plant modelling framework: software for building and running crop models on the APSIM platform. Environ Model Softw 62:385–398. https://doi.org/10.1016/j.envsoft.2014.09.005

    Article  Google Scholar 

  • Brown H, Huth N, Holzworth D (2018) 1 The APSIM Potato Model. http://apsimdev.apsim.info/ApsimxFiles/Potato4403.pdf

  • Costa LD, Vedove GD, Gianquinto G, Giovanardi R, Peressotti A (1997) Yield, water use efficiency and nitrogen uptake in potato: influence of drought stress. Potato Res 40:19–34

    Article  Google Scholar 

  • Crosslin JM, Munyaneza JE, Brown JK, Liefting LW (2010) A history in the making: Potato Zebra chip disease associated with a new Psyllid-borne Bacterium – a tale of striped potatoes. APSnet Features. https://doi.org/10.1094/APSnet-Feature-2010-0110

  • Dalla Costa L, Delle Vedove G, Gianquinto G, Giovanardi R, Peressotti A (1997) Yield, water use efficiency and nitrogen uptake in potato: influence of drought stress. Potato Res 40:19–34

    Article  Google Scholar 

  • Davies A, Jenkins T, Pike A, Shaq J, Carson I, Pollock CJ, Parry MI (1996) Modelling the predicted geographic and economic response of UK cropping systems to climate change scenarios: the case of potatoes. Asp Appl Biol 45:63–69

    Google Scholar 

  • El-Abedin TKZ, Mattar MA, Alazba AA, Al-Ghobari HM (2017) Comparative effects of two water-saving irrigation techniques on soil water status, yield, and water use efficiency in potato. Sci Hortic 225:525–532

    Article  Google Scholar 

  • Eriksson D, Carlson-Nilsson U, Ortíz R, Andreasson E (2016) Overview and breeding strategies of table potato production in Sweden and the Fennoscandian region. Potato Res 59(3):279–294. https://doi.org/10.1007/s11540-016-9328-6

    Article  Google Scholar 

  • Eshel D, Tepel-Bamnolker P (2012) Can loss of apical dominance in potato tuber serve as a marker of physiological age? Plant Signal Behav 7:1158–1162

    Article  Google Scholar 

  • FAO (2017). http://faostat.fao.org/. Accessed in Jan 2017

  • Food and Agriculture Organization of the United Nations (FAO), World crop production statistics (2016). http://www.faostat.fao.org. Accessed 10th Sept 2016

  • Gao X, Li C, Zhang M, Wang R, Chen B (2015) Controlled release urea improved the nitrogen use efficiency, yield and quality of potato (Solanum tuberosum L.) on silt loamy soil. Field Crop Res 181:60–68. https://doi.org/10.1016/j.fcr.2015.07.009

    Article  Google Scholar 

  • Geisseler D, Wilson R (2020) Nitrogen in potato rotations with cover crops: field trial and simulations using DSSAT. Agron JAccepted Author Manuscript. https://doi.org/10.1002/agj2.20177

  • Hack H, Gall H, Klemke Th., Klose R, Meier U, Stauss R, Witzenberger A (2001) The BBCH scale for phonological growth stages of potato (Solanum tuberosum L.). In: Meier U (ed) Growth stages of mono and dicotyledonous Plants, BBCH Monograph, Federal Biological Research Centre for Agriculture and Forestry

    Google Scholar 

  • Haverkort AJ, Franke AC, Steyn JM, Pronk AA, Caldiz DO, Kooman PL (2015) A robust potato model: LINTUL-POTATO-DSS. Potato Res 58(4):313–327. https://doi.org/10.1007/s11540-015-9303-7

    Article  Google Scholar 

  • Hijmans RJ (2003) The effect of climate change on global potato production. Am J Pot Res 80:271–279. https://doi.org/10.1007/BF02855363

    Article  Google Scholar 

  • Hodges T, Johnson S, Johnson B (1992) SIMPOTATO: a highly modular program structure for an IBSNAT style crop simulation. Agron J 84:911–915

    Article  Google Scholar 

  • Hoogenboom G, Porter CH, Shelia V, Boote KJ, Singh U, White JW, Hunt LA, Ogoshi R, Lizaso JI, Koo J, Asseng S, Singels A, Moreno LP, Jones JW (2019) Decision support system for agrotechnology transfer (DSSAT) version 4.7.5 (www.dssat.net). DSSAT Foundation, Gainesville, FL

    Google Scholar 

  • Jackson BC, Goolsby J, Wyzykowski A, Vitovsky N, Bextine B (2009) Analysis of genetic relationships between potato psyllid (Bactericera cockerelli) populations in the United States, Mexico and Guatemala using ITS2 and Inter Simple Sequence Repeat (ISSR) data. Subtrop Plant Sci 61:1–5

    Google Scholar 

  • Jégo G, Martínez M, Antigüedad I, Launay M, Sanchez-Pérez JM, Justes E (2008) Evaluation of the impact of various agricultural practices on nitrate leaching under the root zone of potato and sugar beet using the STICS soil–crop model. Sci Total Environ 394(2):207–221. https://doi.org/10.1016/j.scitotenv.2008.01.021

    Article  CAS  PubMed  Google Scholar 

  • Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt LA, Wilkens PW, Singh U, Gijsman AJ, Ritchie JT (2003) The DSSAT cropping system model. Eur J Agron 18(3–4):235–265. https://doi.org/10.1016/S1161-0301(02)00107-7

    Article  Google Scholar 

  • Khan MA, Gemenet DC, Villordon A (2016) Root system architecture and abiotic stress tolerance: current knowledge in root and tuber crops. Front Plant Sci 7(1584). https://doi.org/10.3389/fpls.2016.01584

  • Khan MS, Struik PC, van der Putten PEL, Jansen HJ, van Eck HJ, van Eeuwijk FA, Yin X (2019) A model-based approach to analyse genetic variation in potato using standard cultivars and a segregating population. I. Canopy cover dynamics. Field Crop Res 242:107581. https://doi.org/10.1016/j.fcr.2019.107581

    Article  Google Scholar 

  • Kooman PL, Haverkort AJ (1995) Modelling development and growth of the potato crop influenced by temperature and daylength: LINTUL-POTATO. In: Haverkort AJ, MacKerron DKL (eds) Potato ecology and modelling of crops under conditions limiting growth: proceedings of the second international potato modeling conference, held in Wageningen 17–19 May, 1994. Springer Netherlands, Dordrecht, pp 41–59. https://doi.org/10.1007/978-94-011-0051-9_3

    Chapter  Google Scholar 

  • Kooman PL, Fahem M, Tegera P, Haverkort AJ (1996a) Effects of climate on different potato genotypes 2. Dry matter allocation and duration of the growth cycle. Eur J Agron 5:207–217

    Article  Google Scholar 

  • Kooman PL, Fahem M, Tegera P, Haverkort AJ (1996b) Effects of climate on different potato genotypes 1. Radiation interception, total and tuber dry matter production. Eur J Agron 5:193–205

    Article  Google Scholar 

  • Lafta AM, Lorenzen JH (1995) Effect of high temperature on plant growth and carbohydrate metabolism in potato. Plant Physiol 109(2):637–643. https://doi.org/10.1104/pp.109.2.637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leiminger JH, Hausladen H (2011) Early blight control in potato using diseaseorientated threshold values. Plant Dis 96:124–130

    Article  Google Scholar 

  • Linker R, Ioslovich I, Sylaios G, Plauborg F, Battilani A (2016) Optimal model-based deficit irrigation scheduling using AquaCrop: a simulation study with cotton, potato and tomato. Agric Water Manag 163:236–243. https://doi.org/10.1016/j.agwat.2015.09.011

    Article  Google Scholar 

  • Lizana XC, Avila A, Tolaba A, Martinez JP (2017) Field responses of potato to increased temperature during tuber bulking: projection for climate change scenarios, at high-yield environments of Southern Chile. Agric For Meteorol 239:192–201

    Article  Google Scholar 

  • Lutaladio N, Castaidi L (2009) Potato: the hidden treasure. J Food Compos Anal 22(6)

    Google Scholar 

  • Lutz W, Samir KC (2010) Dimensions of global population projections: what do we know about future population trends and structures? Philos Trans R Soc Lond B-Biol Sci 365(1554):2779–2791

    Article  Google Scholar 

  • Martínez-Romero A, Domínguez A, Landeras G (2019) Regulated deficit irrigation strategies for different potato cultivars under continental Mediterranean-Atlantic conditions. Agric Water Manag 216:164–176. https://doi.org/10.1016/j.agwat.2019.01.030

    Article  Google Scholar 

  • Miglietta F, Magliulo V, Bindi M, Cerio L, Vaccari FP, Loduca V, Peressotti A (1998) Free air CO2 enrichment of potato (Solanum tuberosum L.): development, growth and yield. Glob Chang Biol 4:163–172

    Article  Google Scholar 

  • Mihovilovich E, Carli C, De Mendiburu F, Hualla V, Bonierbale M (2014) Protocol for tuber bulking maturity assessment of elite and advanced potato clones. Int. Potato Center, Lima, Peru. 18–19

    Google Scholar 

  • Montoya F, Camargo D, Ortega JF, Córcoles JI, Domínguez A (2016) Evaluation of Aquacrop model for a potato crop under different irrigation conditions. Agric Water Manag 164:267–280. https://doi.org/10.1016/j.agwat.2015.10.019

    Article  Google Scholar 

  • Montoya F, Camargo D, Domínguez A, Ortega JF, Córcoles JI (2018) Parametrization of Cropsyst model for the simulation of a potato crop in a Mediterranean environment. Agric Water Manag 203:297–310. https://doi.org/10.1016/j.agwat.2018.03.029

    Article  Google Scholar 

  • Montoya F, Camargo D, Córcoles JI, Domínguez A, Ortega JF (2020) Analysis of deficit irrigation strategies by using SUBSTOR-potato model in a semi-arid area. J Agric Sci:1–14. https://doi.org/10.1017/S002185961900090X

  • Morissette R, Jégo G, Bélanger G, Cambouris AN, Nyiraneza J, Zebarth BJ (2016) Simulating potato growth and nitrogen uptake in eastern Canada with the STICS model. Agron J 108(5):1853–1868. https://doi.org/10.2134/agronj2016.02.0112

    Article  CAS  Google Scholar 

  • Munyaneza JE, Henne DC (2013) Chapter 4 – Leafhopper and psyllid pests of potato. In: Alyokhin A, Vincent C, Giordanengo P (eds) Insect pests of potato. Academic Press, San Diego, pp 65–102. https://doi.org/10.1016/B978-0-12-386895-4.00004-1

    Chapter  Google Scholar 

  • Ojeda JJ, Rezaei EE, Remenyi TA, Webb MA, Webber HA, Kamali B, Harris RMB, Brown JN, Kidd DB, Mohammed CL, Siebert S, Ewert F, Meinke H (2020) Effects of soil- and climate data aggregation on simulated potato yield and irrigation water requirement. Sci Total Environ 710:135589. https://doi.org/10.1016/j.scitotenv.2019.135589

    Article  CAS  PubMed  Google Scholar 

  • Paredes P, D’Agostino D, Assif M, Todorovic M, Pereira LS (2018) Assessing potato transpiration, yield and water productivity under various water regimes and planting dates using the FAO dual Kc approach. Agric Water Manag 195(Supplement C):11–24. https://doi.org/10.1016/j.agwat.2017.09.011

    Article  Google Scholar 

  • Parent S-É, Leblanc MA, Parent A-C, Coulibali Z, Parent LE (2017) Site-specific multilevel modeling of potato response to nitrogen fertilization. Front Environ Sci 5(81). https://doi.org/10.3389/fenvs.2017.00081

  • Peins DR, Crawford JW, Grashoff C, Jefferies RA, Parter JR, Marshall B (1996) A simulation study of crop growth ahd development under climate change. Agric For Meteorol 79:271–887

    Article  Google Scholar 

  • Peiris DR, Crawford JW, Grashoff C, Jefferies RA, Porter JR, Marshall B (1996) A simulation study of crop growth and development under climate change. Agric For Meteorol 79(4):271–287. https://doi.org/10.1016/0168-1923(95)02286-4

    Article  Google Scholar 

  • Pelletier Y, Michaud D (1995). Insect pest control on potato: genetically-based control. In: Duchesne RM, Boiteau G (eds) Potato insect pest control: development of a sustainable approach, Gouvernement du Que’bec. 69–79

    Google Scholar 

  • Pinhero RG, Coffin R, Yada RY (2009) Post-harvest storage of potatoes. Advances in potato chemistry and technology. Academic Press (Elsevier), New York, pp 339–370

    Book  Google Scholar 

  • Rajsic P, Weersink A (2008) Do farmers waste fertilizer? A comparison of ex post optimal nitrogen rates and ex ante recommendations by model, site and year. Agric Syst 97(1):56–67. https://doi.org/10.1016/j.agsy.2007.12.001

    Article  Google Scholar 

  • Raymundo R, Kleinwechter U, Asseng S (2014). Virtual potato crop modeling A comparison of genetic coefficients of the DSSAT-SUBSTOR potato model with breeding goals for developing countries. Zenodo. https://doi.org/10.5281/zenodo.7687

  • Raymundo R, Asseng S, Prassad R, Kleinwechter U, Concha J, Condori B, Bowen W, Wolf J, Olesen JE, Dong Q, Zotarelli L, Gastelo M, Alva A, Travasso M, Quiroz R, Arora V, Graham W, Porter C (2017) Performance of the SUBSTOR-potato model across contrasting growing conditions. Field Crop Res 202:57–76. https://doi.org/10.1016/j.fcr.2016.04.012

    Article  Google Scholar 

  • Razzaghi F, Zhou Z, Andersen MN, Plauborg F (2017) Simulation of potato yield in temperate condition by the AquaCrop model. Agric Water Manag 191:113–123. https://doi.org/10.1016/j.agwat.2017.06.008

    Article  Google Scholar 

  • Rens LR, Zotarelli L, Rowland DL, Morgan KT (2018) Optimizing nitrogen fertilizer rates and time of application for potatoes under seepage irrigation. Field Crop Res 215:49–58. https://doi.org/10.1016/j.fcr.2017.10.004

    Article  Google Scholar 

  • Ritchie J, Griffin TS, Johnson BS (1995) SUBSTOR: functional model of potato growth, development and yield. In: Modelling and parameterization of the soil-plant-atmosphere system: a comparison of potato growth models, pp 401–435

    Google Scholar 

  • Romanucci V, Di Fabio G, Di Marino C, Davinelli S, Scapagnini G, Zarrelli A (2018) Evaluation of new strategies to reduce the total content of α-solanine and α-chaconine in potatoes. Phytochem Lett 23:116–119

    Article  CAS  Google Scholar 

  • Rosenzweig C, Phillips J, Goldberg R, Carroll J, Hodges T (1996) Potential impacts of climate change on citrus and potato production in the US. Agric Syst 52(4):455–479. https://doi.org/10.1016/0308-521X(95)00059-E

    Article  Google Scholar 

  • Rykaczewska K (2015) The effect of high temperature occurring in subsequent stages of plant development on potato yield and tuber physiological defects. Am J Potato Res 92(3):339–349. https://doi.org/10.1007/s12230-015-9436-x

    Article  CAS  Google Scholar 

  • Singh U, Matthews RB, Griffin TS, Ritchie JT, Hunt LA, Goenaga R (1998) Modeling growth and development of root and tuber crops. In: Tsuji G, Hoogenboom G, Thornton P (eds) Understanding options for agricultural production, vol 7. Systems approaches for sustainable agricultural development. Springer, Dordrecht, pp 129–156. https://doi.org/10.1007/978-94-017-3624-4_7

  • Shillito RM, Timlin DJ, Fleisher D, Reddy VR, Quebedeaux B (2009) Yield response of potato to spatially patterned nitrogen application. Agric Ecosyst Environ 129(1):107–116. https://doi.org/10.1016/j.agee.2008.07.010

    Article  CAS  Google Scholar 

  • Šrek P, Hejcman M, Kunzová E (2010) Multivariate analysis of relationship between potato (Solanum tuberosum L.) yield, amount of applied elements, their concentrations in tubers and uptake in a long-term fertilizer experiment. Field Crop Res 118(2):183–193. https://doi.org/10.1016/j.fcr.2010.05.009

    Article  Google Scholar 

  • Stevenson WR, Loria R, Franc GD, Weingartner DP (2001) Compendium of potato diseases, 2nd edn. The American Phytopathological Society, St. Paul

    Google Scholar 

  • Tang J, Xiao D, Bai H, Wang B, Liu DL, Feng P, Zhang Y, Zhang J (2020) Potential benefits of potato yield at two sites of agro-pastoral ecotone in North China under future climate change. Int J Plant Prod. https://doi.org/10.1007/s42106-020-00092-7

  • Tang J, Wang J, Fang Q, Dayananda B, Yu Q, Zhao P, Yin H, Pan X (2019) Identifying agronomic options for better potato production and conserving water resources in the agro-pastoral ecotone in North China. Agric For Meteorol 272-273:91–101. https://doi.org/10.1016/j.agrformet.2019.04.001

    Article  Google Scholar 

  • Tryjanowski P, Sparks TH, Blecharczyk A, Małecka-Jankowiak I, Switek S, Sawinska Z (2017) Changing phenology of potato and of the treatment for its major pest (Colorado potato beetle) – a long-term analysis. Am J Potato Res. https://doi.org/10.1007/s12230-017-9611-3

  • Van Der Waals JE, Korsten L, Aveling TAS (2001) A review of early blight of potato. Afr Plant Prot 7:91–102

    Google Scholar 

  • van Oort PAJ, Timmermans BGH, van Swaaij ACPM (2012) Why farmers’ sowing dates hardly change when temperature rises. Eur J Agron 40:102–111. https://doi.org/10.1016/j.eja.2012.02.005

    Article  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61(3):199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011

    Article  Google Scholar 

  • Wang L, Coulter JA, Palta JA, Xie J, Luo Z, Li L, Carberry P, Li Q, Deng X (2019) Mulching-induced changes in tuber yield and nitrogen use efficiency in potato in China: a meta-analysis. Agronomy 9(12):793

    Article  Google Scholar 

  • Woli P, Hoogenboom G (2018) Simulating weather effects on potato yield, nitrate leaching, and profit margin in the US Pacific Northwest. Agric Water Manag 201:177–187. https://doi.org/10.1016/j.agwat.2018.01.023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukhtar Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmed, M. et al. (2020). Potato Modeling. In: Ahmed, M. (eds) Systems Modeling. Springer, Singapore. https://doi.org/10.1007/978-981-15-4728-7_14

Download citation

Publish with us

Policies and ethics