Skip to main content

Chickpea Modeling Under Rainfed Conditions

  • Chapter
  • First Online:
Systems Modeling

Abstract

Climate variability and extreme weather might increase in frequency due to climate change, which could have significant effect on chickpea production. Recently, a study was conducted, aided with simulation modeling approach, in different rainfed regions of Pakistan to check the potential impacts of climate variability on chickpea. Initially, varieties were screened on the basis of germination percentage. Two varieties, Balkasar and Thal 2006, performed best in the germination test and thus grown at two locations, i.e., University Research Farm (URF), Koont, Chakwal Road, Rawalpindi (medium), and Bijwal Farm, Fateh Jang (low), rainfall zones of Pothwar, for field evaluation of best-performing varieties of chickpea. During the course of study, different phenological and yield component parameters have been recorded. Collected data was analyzed statistically to see the performance of varieties under different climatic conditions of these two sites. DSSAT_CROPGRO_Chickpea model was used to simulate crop phenology and yield, i.e., above-ground mass and grain yield of chickpea under rainfed conditions. The model was calibrated and validated on the basis of experimental data. Values obtained from model runs were compared with observed values by using validation scores. Simulation outcomes from days to anthesis, days to maturity, and above-ground mass, i.e., biological yield and grain yield, showed that the location URF-Koont proved better for chickpea crop. Observed and simulated data were compared for model efficiency. At both locations, Thal 2006 performed best under water-limited conditions of Pothwar. Based upon these values, further yield was predicted for varying environmental scenarios in order to recommend best-performing varieties in this particular climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Ali A, Khaliq T, Wajid SA, Iqbal Z, Ibrahim M, Javeed HMR, Hoogenboom G (2013) OILCROP-SUN model relevance for evaluation of nitrogen management of sunflower hybrids in Sargodha, Punjab. Am J Plant Sci 4(9):1731

    Google Scholar 

  • Ahmad S, Abbas G, Fatima Z, Khan RJ, Anjum MA, Ahmed M, Khan MA, Porter CH, Hoogenboom G (2017) Quantification of the impacts of climate warming and crop management on canola phenology in Punjab, Pakistan. J Agron Crop Sci 203(5):442–452. https://doi.org/10.1111/jac.12206

    Article  Google Scholar 

  • Ahmad S, Abbas G, Ahmed M, Fatima Z, Anjum MA, Rasul G, Khan MA, Hoogenboom G (2019) Climate warming and management impact on the change of phenology of the rice-wheat cropping system in Punjab, Pakistan. Field Crop Res 230:46–61. https://doi.org/10.1016/j.fcr.2018.10.008

    Article  Google Scholar 

  • Ahmed M (2012) Improving soil fertility recommendations in Africa using the decision support system for Agrotechnology transfer (DSSAT); a book review. Exp Agric 48(4):602–603

    Google Scholar 

  • Ahmed M (2017) Greenhouse gas emissions and climate variability: an overview. In: Ahmed M, Stockle CO (eds) Quantification of climate variability, adaptation and mitigation for agricultural sustainability. Springer International Publishing, Cham, pp 1–26. https://doi.org/10.1007/978-3-319-32059-5_1

    Chapter  Google Scholar 

  • Ahmed M (2020) Introduction to modern climate change. Andrew E. Dessler: Cambridge University Press, 2011, 252 pp, ISBN-10: 0521173159. Sci Total Environ 734:139397. https://doi.org/10.1016/j.scitotenv.2020.139397

  • Ahmed M, Ahmad S (2019) Carbon dioxide enrichment and crop productivity. In: Hasanuzzaman M (ed) Agronomic crops, Management practices, vol 2. Springer Singapore, Singapore, pp 31–46. https://doi.org/10.1007/978-981-32-9783-8_3

    Chapter  Google Scholar 

  • Ahmed M, Stockle CO (2016) Quantification of climate variability, adaptation and mitigation for agricultural sustainability. Springer Nature Singapore Pvt. Ltd, Singapore, 437 pp. https://doi.org/10.1007/978-3-319-32059-5

  • Ahmed M, Asif M, Hirani AH, Akram MN, Goyal A (2013) Modeling for agricultural sustainability: a review. In: Bhullar GS, Bhullar NK (eds) Agricultural sustainability progress and prospects in crop research. Elsevier, London

    Google Scholar 

  • Ahmed M, Aslam MA, Hassan FU, Asif M, Hayat R (2014) Use of APSIM to model nitrogen use efficiency of rain-fed wheat. Int J Agric Biol 16:461–470

    CAS  Google Scholar 

  • Ahmed M, Akram MN, Asim M, Aslam M, Hassan F-u, Higgins S, Stöckle CO, Hoogenboom G (2016) Calibration and validation of APSIM-wheat and CERES-wheat for spring wheat under rainfed conditions: models evaluation and application. Comput Electron Agric 123:384–401. https://doi.org/10.1016/j.compag.2016.03.015

    Article  Google Scholar 

  • Ahmed M, Stöckle CO, Nelson R, Higgins S (2017) Assessment of climate change and atmospheric CO2 impact on winter wheat in the pacific northwest using a multimodel ensemble. Front Ecol Evol 5(51). https://doi.org/10.3389/fevo.2017.00051

  • Ahmed M, Ijaz W, Ahmad S (2018) Adapting and evaluating APSIM-SoilP-wheat model for response to phosphorus under rainfed conditions of Pakistan. J Plant Nutr 41(16):2069–2084. https://doi.org/10.1080/01904167.2018.1485933

    Article  CAS  Google Scholar 

  • Ahmed M, Stöckle CO, Nelson R, Higgins S, Ahmad S, Raza MA (2019) Novel multimodel ensemble approach to evaluate the sole effect of elevated CO2 on winter wheat productivity. Sci Rep 9(1):7813. https://doi.org/10.1038/s41598-019-44251-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alam M, Haider S (2006) Growth attributes of barley (Hordeum vulgare L.) cultivars in relation to different doses of nitrogen fertilizer. J Life Earth Sci 1(2):77–82

    Google Scholar 

  • Ali A, Erenstein O (2017) Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim Risk Manag 16:183–194. https://doi.org/10.1016/j.crm.2016.12.001

    Article  Google Scholar 

  • Ali S, Liu Y, Ishaq M, Shah T, Ilyas A, Din IU (2017) Climate change and its impact on the yield of major food crops: evidence from Pakistan. Foods 6(6):39

    PubMed Central  Google Scholar 

  • Andarzian B, Bannayan M, Steduto P, Mazraeh H, Barati M, Barati M, Rahnama A (2011) Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran. Agric Water Manag 100(1):1–8

    Google Scholar 

  • Angadi S, Cutforth H, Miller P, McConkey B, Entz M, Brandt S, Volkmar K (2000) Response of three Brassica species to high temperature stress during reproductive growth. Can J Plant Sci 80(4):693–701

    Google Scholar 

  • Apata TG (2011) Effects of global climate change on Nigerian agriculture: an empirical analysis. CBN J Appl Stat 2(1):31–50

    Google Scholar 

  • Aslam MA, Ahmed M, Hayat R (2017) Modeling nitrogen use efficiency under changing climate. In: Ahmed M, Stockle CO (eds) Quantification of climate variability, adaptation and mitigation for agricultural sustainability. Springer International Publishing, Cham, pp 71–90. https://doi.org/10.1007/978-3-319-32059-5_4

  • Asseng S, Martre P, Maiorano A, Rötter RP, O’Leary GJ, Fitzgerald GJ, Girousse C, Motzo R, Giunta F, Babar MA, Reynolds MP, Kheir AMS, Thorburn PJ, Waha K, Ruane AC, Aggarwal PK, Ahmed M, Balkovič J, Basso B, Biernath C, Bindi M, Cammarano D, Challinor AJ, De Sanctis G, Dumont B, Eyshi Rezaei E, Fereres E, Ferrise R, Garcia-Vila M, Gayler S, Gao Y, Horan H, Hoogenboom G, Izaurralde RC, Jabloun M, Jones CD, Kassie BT, Kersebaum K-C, Klein C, Koehler A-K, Liu B, Minoli S, Montesino San Martin M, Müller C, Naresh Kumar S, Nendel C, Olesen JE, Palosuo T, Porter JR, Priesack E, Ripoche D, Semenov MA, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Van der Velde M, Wallach D, Wang E, Webber H, Wolf J, Xiao L, Zhang Z, Zhao Z, Zhu Y, Ewert F (2019) Climate change impact and adaptation for wheat protein. Glob Chang Biol 25(1):155–173. https://doi.org/10.1111/gcb.14481

    Article  PubMed  Google Scholar 

  • Azimi SM, Kor NM, Ahmadi M, Shaaban M, Motlagh ZR, Shamsizadeh M (2015) Investigation of growth analysis in chickpea (Cicer arietinum L.) cultivars under drought stress. Int J Life Sci 9(5):91–94

    Google Scholar 

  • Bannayan M, Crout N, Hoogenboom G (2003) Application of the CERES-wheat model for within-season prediction of winter wheat yield in the United Kingdom. Agron J 95(1):114–125

    Google Scholar 

  • Berger J, Milroy S, Turner N, Siddique K, Imtiaz M, Malhotra R (2011) Chickpea evolution has selected for contrasting phenological mechanisms among different habitats. Euphytica 180(1):1–15

    Google Scholar 

  • Chmielewski F-M, Müller A, Bruns E (2004) Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agric For Meteorol 121(1):69–78

    Google Scholar 

  • Christensen O, Christensen J (2004) Intensification of extreme European summer precipitation in a warmer climate. Glob Planet Chang 44(1):107–117

    Google Scholar 

  • Climate Risk Index (2020) World map 1999–2018. www.germanwatch.org/en/cri2

  • Confalonieri R, Orlando F, Paleari L, Stella T, Gilardelli C, Movedi E, Pagani V, Cappelli G, Vertemara A, Alberti L (2016) Uncertainty in crop model predictions: what is the role of users? Environ Model Softw 81:165–173

    Google Scholar 

  • Craufurd PQ, Wheeler T (2009) Climate change and the flowering time of annual crops. J Exp Bot 60(9):2529–2539

    CAS  PubMed  Google Scholar 

  • Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Chang 2(1):45–65

    Google Scholar 

  • Devasirvatham V, Gaur PM, Mallikarjuna N, Tokachichu RN, Trethowan RM, Tan DK (2012) Effect of high temperature on the reproductive development of chickpea genotypes under controlled environments. Funct Plant Biol 39(12):1009–1018

    PubMed  Google Scholar 

  • Donald C (1962) In search of yield. J. Aust. Inst. Agric. Sci. 28:171–178

    Google Scholar 

  • Donald CM (1968) The breeding of crop ideotypes. Euphytica 17(3):385–403. https://doi.org/10.1007/BF00056241

    Article  Google Scholar 

  • Fisher D, Dyke A, Koerner R, Bourgeois J, Kinnard C, Zdanowicz C, De Vernal A, Hillaire-Marcel C, Savelle J, Rochon A (2006) Natural variability of Arctic Sea ice over the Holocene. Eos 87(28):273–280

    Google Scholar 

  • Fourcaud T, Zhang X, Stokes A, Lambers H, Körner C (2008) Plant growth modelling and applications: the increasing importance of plant architecture in growth models. Ann Bot 101(8):1053–1063

    PubMed  PubMed Central  Google Scholar 

  • Frade MM, Valenciano J (2005) Effect of sowing density on the yield and yield components of spring-sown irrigated chickpea (Cicer arietinum) grown in Spain. N Z J Crop Hortic Sci 33(4):367–371

    Google Scholar 

  • Gan Y, Angadi S, Cutforth H, Potts D, Angadi V, McDonald C (2004) Canola and mustard response to short periods of temperature and water stress at different developmental stages. Can J Plant Sci 84(3):697–704

    Google Scholar 

  • Gaydon D, Wang E, Poulton P, Ahmad B, Ahmed F, Akhter S, Ali I, Amarasingha R, Chaki A, Chen C (2017) Evaluation of the APSIM model in cropping systems of Asia. Field Crop Res 204:52–75

    Google Scholar 

  • Greve P, Orlowsky B, Mueller B, Sheffield J, Reichstein M, Seneviratne SI (2014) Global assessment of trends in wetting and drying over land. Nat Geosci 7(10):716–721

    CAS  Google Scholar 

  • Hoogenboom G, Tsuji GY, Pickering NB, Curry RB, Jones JW, Singh U, Godwin DC (1995) Decision support system to study climate change impacts on crop production. In: Rosenzweig C (ed) Climate change and agriculture: Analysis of potential international impacts, ASA Special Publication, vol 59. Madison, WI, American Society of Agronomy, pp 51–75. https://doi.org/10.2134/asaspecpub59.c3

    Chapter  Google Scholar 

  • Hoogenboom G, Jones J, Wilkens P, Porter C, Boote K, Hunt L, Singh U, Lizaso J, White J, Uryasev O (2015) Decision support system for Agrotechnology transfer (DSSAT) version 4.6 (www.DSSAT.net). DSSAT Foundation, Prosser, Washington

    Google Scholar 

  • Hoogenboom G, Porter CH, Boote KJ, Shelia V, Wilkens PW, Singh U, White JW, Asseng S, Lizaso JI, Moreno LP, Pavan W, Ogoshi R, Hunt LA, Tsuji GY, Jones JW (2019a) The DSSAT crop modeling ecosystem. In: Boote KJ (ed) Advances in crop modeling for a sustainable agriculture. Burleigh Dodds Science Publishing, Cambridge, United Kingdom, pp 173–216. https://doi.org/10.19103/AS.2019.0061.10

  • Hoogenboom G, Porter CH, Shelia V, Boote KJ, Singh U, White JW, Hunt LA, Ogoshi R, Lizaso JI, Koo J, Asseng S, Singels A, Moreno LP, Jones JW (2019b) Deecision support system for agrotechnology transfer (DSSAT) Version 4.7.5. DSSAT Foundation, Gainesville, Floridea, USA. www.dssat.net.

  • Huntingford C, Jones R, Prudhomme C, Lamb R, Gash JH, Jones DA (2003) Regional climate-model predictions of extreme rainfall for a changing climate. Q J R Meteorol Soc 129(590):1607–1621

    Google Scholar 

  • Ijaz W, Ahmed M, Asim M, Aslam M (2017) Models to study phosphorous dynamics under changing climate. In: Ahmed M, Stockle CO (eds) Quantification of climate variability, adaptation and mitigation for agricultural sustainability. Springer International Publishing, Cham, pp 371–386. https://doi.org/10.1007/978-3-319-32059-5_15

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2014) Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Contribution of working group ii to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom, New York, NY, USA

    Google Scholar 

  • Jabeen M, Gabriel HF, Ahmed M, Mahboob MA, Iqbal J (2017) Studying impact of climate change on wheat yield by using DSSAT and GIS: a case study of Pothwar region. In: Ahmed M, Stockle CO (eds) Quantification of climate variability, adaptation and mitigation for agricultural sustainability. Springer International Publishing, Cham, pp 387–411. https://doi.org/10.1007/978-3-319-32059-5_16

    Chapter  Google Scholar 

  • Khan IA, Abourashed EA (2011) Leung’s encyclopedia of common natural ingredients: used in food, drugs and cosmetics. John Wiley & Sons, New York

    Google Scholar 

  • Khan E, Aslam M, Ahmad H, Himayatullah KM, Hussain A (2010) Effect of row spacing and seeding rates on growth, yield and yield components of chickpea. Sarhad J Agric 26(2):201–211

    Google Scholar 

  • Kibe A, Singh S, Kalra N (2006) Water–nitrogen relationships for wheat growth and productivity in late sown conditions. Agric Water Manag 84(3):221–228

    Google Scholar 

  • Knights EJ, Hobson KB (2016) Chickpea: overview. In: Encyclopedia of food grains, 2nd edn. Academic Press, Oxford, pp 316–323. https://doi.org/10.1016/B978-0-12-394437-5.00035-8

    Chapter  Google Scholar 

  • Kutcher HR, Warland JS, Brandt SA (2010) Temperature and precipitation effects on canola yields in Saskatchewan, Canada. Agric For Meteorol 150(2):161–165. https://doi.org/10.1016/j.agrformet.2009.09.011

    Article  Google Scholar 

  • Liang E, Liu X, Yuan Y, Qin N, Fang X, Huang L, Zhu H, Wang L, Shao X (2006) The 1920s drought recorded by tree rings and historical documents in the semi-arid and arid areas of northern China. Clim Chang 79(3–4):403–432

    Google Scholar 

  • Liu B, Martre P, Ewert F, Porter JR, Challinor AJ, Müller C, Ruane AC, Waha K, Thorburn PJ, Aggarwal PK, Ahmed M, Balkovič J, Basso B, Biernath C, Bindi M, Cammarano D, De Sanctis G, Dumont B, Espadafor M, Eyshi Rezaei E, Ferrise R, Garcia-Vila M, Gayler S, Gao Y, Horan H, Hoogenboom G, Izaurralde RC, Jones CD, Kassie BT, Kersebaum KC, Klein C, Koehler A-K, Maiorano A, Minoli S, Montesino San Martin M, Naresh Kumar S, Nendel C, O’Leary GJ, Palosuo T, Priesack E, Ripoche D, Rötter RP, Semenov MA, Stöckle C, Streck T, Supit I, Tao F, Van der Velde M, Wallach D, Wang E, Webber H, Wolf J, Xiao L, Zhang Z, Zhao Z, Zhu Y, Asseng S (2019) Global wheat production with 1.5 and 2.0°C above pre-industrial warming. Glob Chang Biol 25(4):1428–1444. https://doi.org/10.1111/gcb.14542

    Article  Google Scholar 

  • Lobell DB, Bänziger M, Magorokosho C, Vivek B (2011) Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat Clim Chang 1(1):42–45

    Google Scholar 

  • Luedeling E, Zhang M, Girvetz EH (2009) Climatic changes lead to declining winter chill for fruit and nut trees in California during 1950–2099. PLoS One 4(7):e6166

    PubMed  PubMed Central  Google Scholar 

  • Machado S, Paulsen GM (2001) Combined effects of drought and high temperature on water relations of wheat and sorghum. Plant Soil 233(2):179–187

    CAS  Google Scholar 

  • Mafakheri A, Siosemardeh A, Bahramnejad B, Struik P, Sohrabi Y (2010) Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust J Crop Sci 4(8):580

    CAS  Google Scholar 

  • Mall RK, Gupta A, Sonkar G (2017) 2 – effect of climate change on agricultural crops. In: Current developments in biotechnology and bioengineering. Elsevier, pp 23–46. https://doi.org/10.1016/B978-0-444-63661-4.00002-5

  • McMaster GS, White JW, Hunt L, Jamieson P, Dhillon S, Ortiz-Monasterio J (2008) Simulating the influence of vernalization, photoperiod and optimum temperature on wheat developmental rates. Ann Bot 102(4):561–569

    PubMed  PubMed Central  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A (2007) Global climate projections. Clim Change 3495:747–845

    Google Scholar 

  • Mohammed A, Tarpley L (2009) High nighttime temperatures affect rice productivity through altered pollen germination and spikelet fertility. Agric For Meteorol 149(6):999–1008

    Google Scholar 

  • Monpara B, Kalariya R (2009) Changes in certain yield traits as influenced by differences in maturity time in bread wheat. Plant Arch 9(1):335–339

    Google Scholar 

  • Muehlbauer FJ, Sarker A (2017) Economic importance of chickpea: production, value, and world trade. In: The chickpea genome. Springer, New York, pp 5–12

    Google Scholar 

  • Nayyar H, Bains T, Kumar S (2005) Low temperature induced floral abortion in chickpea: relationship to abscisic acid and cryoprotectants in reproductive organs. Environ Exp Bot 53(1):39–47

    CAS  Google Scholar 

  • Ohashi Y, Nakayama N, Saneoka H, Fujita K (2006) Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean plants. Biol Plant 50(1):138–141

    Google Scholar 

  • Oppenheimer M, Alley RB (2004) The West Antarctic ice sheet and long term climate policy. Clim Chang 64(1):1–10

    Google Scholar 

  • Otter-Nacke S, Godwin D, Richie J (1986) Testing and validating the CERES-wheat model in diverse environments. Rational Aeronautics and Space Administration, Houston

    Google Scholar 

  • Pandey S, Kabdal M, Tripathi M (2013) Study of inheritance of erucic acid in Indian mustard (Brassica juncea L. Czern & Coss). Octa J Biosci 1(1):77–84

    CAS  Google Scholar 

  • Pearce RB, Mitchell RL, Gardner FP (1985) Physiology of crop plants. Iowa State University Press, Ames, IA

    Google Scholar 

  • Porter CH, Jones JW, Adiku S, Gijsman AJ, Gargiulo O, Naab J (2010) Modeling organic carbon and carbon-mediated soil processes in DSSAT v4. 5. Oper Res 10(3):247–278

    Google Scholar 

  • Qureshi AS, Shaukat A, Bakhsh A, Arshad M, Ghafoor A (2004) An assessment of variability for economically important traits in chickpea (Cicer arietinum L.). Pak J Bot 36(4):779–785

    Google Scholar 

  • Raja W, Kanth RH, Singh P (2018) Validating the AquaCrop model for maize under different sowing dates. Water Policy 20(4):wp2018123

    Google Scholar 

  • Rasul F, Cheema M, Sattar A, Saleem M, Wahid M (2012) Evaluating the performance of three mungbean varieties grown under varying inter-row spacing. J Anim Plant Sci 22(4):2012

    Google Scholar 

  • Rezaei EE, Webber H, Gaiser T, Naab J, Ewert F (2015) Heat stress in cereals: mechanisms and modelling. Eur J Agron 64:98–113

    Google Scholar 

  • Roberts E, Hadley P, Summerfield R (1985) Effects of temperature and photoperiod on flowering in chickpeas (Cicer arietinum L.). Ann Bot 55(6):881–892

    Google Scholar 

  • Ruchika B, Sandhu J (2009) Pollen viability and pod formation in chickpea (Cicer arietinum) as a criteria for screening and genetic studies of cold tolerance. Indian J Agric Sci 79(2):152–154

    Google Scholar 

  • Shamsi K (2009) The effects of planting density on grain filling, yield and yield components of three chick pea (Cicer arietinum L.) varieties in Kermanshah, Iran. Iran J Animal Plant Sci 2(3):99–103

    Google Scholar 

  • Siddique KHM, Krishnamurthy L (2016) Chickpea, agronomy. In: Reference module in food science. Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.00192-X

  • Siebert S, Ewert F (2012) Spatio-temporal patterns of phenological development in Germany in relation to temperature and day length. Agric For Meteorol 152:44–57

    Google Scholar 

  • Singh T (2005) Influence of moisture conservation practices and fertility levels on mustard and lentil intercropping system under rainfed conditions. Indian Agricultural Research Institute, New Delhi

    Google Scholar 

  • Slafer G (2003) Genetic basis of yield as viewed from a crop physiologist’s perspective. Ann Appl Biol 142(2):117–128

    Google Scholar 

  • Soltani A, Robertson M, Torabi B, Yousefi-Daz M, Sarparast R (2006) Modelling seedling emergence in chickpea as influenced by temperature and sowing depth. Agric For Meteorol 138(1):156–167

    Google Scholar 

  • Stern N (2008) The economics of climate change. Am Econ Rev 98(2):1–37

    Google Scholar 

  • Stoddard F, Balko C, Erskine W, Khan H, Link W, Sarker A (2006) Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica 147(1–2):167–186

    Google Scholar 

  • Takashima NE, Rondanini DP, Puhl LE, Miralles DJ (2013) Environmental factors affecting yield variability in spring and winter rapeseed genotypes cultivated in the southeastern argentine pampas. Eur J Agron 48:88–100

    Google Scholar 

  • Thornton PK, Ericksen PJ, Herrero M, Challinor AJ (2014) Climate variability and vulnerability to climate change: A review. Glob Chan Biol: n/a-n/a. https://doi.org/10.1111/gcb.12581

  • Togay N, Togay Y, Cimrin KM, Turan M (2008) Effects of rhizobium inoculation, sulfur and phosphorus applications on yield, yield components and nutrient uptakes in chickpea (Cicer arietinum L.). Afr J Biotechnol 7(6):776–782

    Google Scholar 

  • USEPA UEPA (2011) Office of solid waste and emergency response, U.S. Environmental Protection Agency. Washington, DC, EPA530-R-99-009

    Google Scholar 

  • Valimohamadi F, Tajbakhsh M, Saeed A (2009) Effect of planting date and plant density on grain yield, yield components and some quality and morphological traits of chickpea (Cicer arietinum L.). JWSS-Isfahan Univ Technol 12(46):31–40

    Google Scholar 

  • Wallach D, Martre P, Liu B, Asseng S, Ewert F, Thorburn PJ, van Ittersum M, Aggarwal PK, Ahmed M, Basso B, Biernath C, Cammarano D, Challinor AJ, De Sanctis G, Dumont B, Eyshi Rezaei E, Fereres E, Fitzgerald GJ, Gao Y, Garcia-Vila M, Gayler S, Girousse C, Hoogenboom G, Horan H, Izaurralde RC, Jones CD, Kassie BT, Kersebaum KC, Klein C, Koehler A-K, Maiorano A, Minoli S, Müller C, Naresh Kumar S, Nendel C, O'Leary GJ, Palosuo T, Priesack E, Ripoche D, Rötter RP, Semenov MA, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Wolf J, Zhang Z (2018) Multimodel ensembles improve predictions of crop–environment–management interactions. Glob Chang Biol 24(11):5072–5083. https://doi.org/10.1111/gcb.14411

    Article  PubMed  Google Scholar 

  • Walley FL, Kyei-Boahen S, Hnatowich G, Stevenson C (2005) Nitrogen and phosphorus fertility management for desi and kabuli chickpea. Can J Plant Sci 85(1):73–79

    Google Scholar 

  • Wang B, Liu DL, Asseng S, Macadam I, Yu Q (2015) Impact of climate change on wheat flowering time in eastern Australia. Agric For Meteorol 209–210:11–21. https://doi.org/10.1016/j.agrformet.2015.04.028

    Article  Google Scholar 

  • White JW, Hoogenboom G, Kimball BA, Wall GW (2011) Methodologies for simulating impacts of climate change on crop production. Field Crop Res 124(3):357–368. https://doi.org/10.1016/j.fcr.2011.07.001

    Article  Google Scholar 

  • Zhang Q, Li J, Singh VP, Xiao M (2013) Spatio-temporal relations between temperature and precipitation regimes: implications for temperature-induced changes in the hydrological cycle. Glob Planet Chang 111:57–76

    Google Scholar 

  • Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61(7):erq053

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukhtar Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Javaid, A., Ahmed, M., Fayyaz-ul-Hassan, Mahmood-ul-Hassan, Ahmad, M., Hayat, R. (2020). Chickpea Modeling Under Rainfed Conditions. In: Ahmed, M. (eds) Systems Modeling. Springer, Singapore. https://doi.org/10.1007/978-981-15-4728-7_13

Download citation

Publish with us

Policies and ethics