Skip to main content

Carcinogenic Nature of Emerging Contaminants: Havoc for Present and Gateway of Unhealthy Future

  • Chapter
  • First Online:
Contaminants in Drinking and Wastewater Sources

Abstract

The term emerging contaminants refers to those substances which are released in the environment and for which yet now no specific rules are established in order to analyse their impact on surrounding. These contaminants are released in water bodies ranging from freshwater, reservoirs, lakes, rivers as well as oceans. Mainly, the sources of these contaminants include industrial untreated waste, sewage plants, agricultural waste, etc. From a very large span of time, our earth is suffering from a dreadful disease called “pollution”, water pollution being one of the major topics of concern. In order to ensure that human health remains unaffected of these hazardous chemical suspended in water bodies, a number of safety standards have been established to check the negligible amount of contaminants entering into drinking water. But this method is not sufficient to control the appearance of multiple contaminants in water bodies which are the carriers of many diseases, cancer being one such dreadful threat for human society. There are various sources of emerging contaminants like pharmaceuticals, pesticides, plasticizers, personal care products, etc. This chapter presents details of various emerging contaminants specially focussing on carcinogenic ones and their harmful effect on human health. Arsenic, radon, hazardous waste, agricultural chemical, fluoride, etc., are discussed in detail focussing on their role in various types of cancer such as lungs, breast, kidney, bladder and liver. Moreover, it is crucially needed to find economical ways to treat these contaminated water in order to reduce risk of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah, EAM, Gagnon GA (2009) Arsenic removal from groundwater through iron oxyhydroxide coated waste products. Can J Civ Eng 36(5):881–888

    Google Scholar 

  • Ahrens L, Felizeter S, Sturm R, Xie Z, Ebinghaus R (2009) Polyfluorinated compounds in waste water treatment plant effluents and surface waters along the River Elbe, Germany. Marine Poll Bull 58(9):1326–1333

    Google Scholar 

  • Aljandali A, Pollack H, Yeldandi A, Yuyu LI, Weitzman SA, Kamp DW (2001) Asbestos causes apoptosis in alveolar epithelial cells: role of iron-induced free radicals. J Lab Clin Med 137(5):330–339

    Google Scholar 

  • Arif M, Hussain I, Hussain J, Sharma S, Kumar S (2012) Fluoride in the drinking water of Nagaur Tehsil of Nagaur district, Rajasthan, India. Bull Environ Contam Toxicol 88(6):870–875

    Article  CAS  Google Scholar 

  • Arnold, BW (2006) Radon transport. In: Gas transport in porous media. Springer, Dordrecht, pp. 333–338

    Google Scholar 

  • Arora NK, Fatima T, Mishra I, Verma M, Mishra J, Mishra V (2018) Environmental sustainability: challenges and viable solutions. Environ Sustain 1(4):309–340

    Google Scholar 

  • Ault JG, Cole RW, Jensen CG, Jensen LCW, Bachert LA, Rieder CL (1995) Behavior of crocidolite asbestos during mitosis in living vertebrate lung epithelial cells. Cancer Res 55(4):792–798

    Google Scholar 

  • Bang DY, Kyung M, Kim MJ, Jung BY, Cho MC, Choi SM, Kim YW et al (2012) Human risk assessment of endocrine‐disrupting chemicals derived from plastic food containers. Compr Rev Food Sci Food Saf 11(5):453–470

    Google Scholar 

  • Basu A, Saha D, Saha R, Ghosh T, Saha B (2014) A review on sources, toxicity and remediation technologies for removing arsenic from drinking water. Res Chem Intermed 40(2):447–485

    Google Scholar 

  • Bell MC, Ludwig TG (1970) The supply of fluoride to man: ingestion from water, fluorides and human health, WHO Monograph series 59. World Health Organization, Geneva

    Google Scholar 

  • Brammer H, Ravenscroft P (2009) Arsenic in groundwater: a threat to sustainable agriculture in South and South-east Asia. Environ Int 35(3):647–654

    Article  CAS  Google Scholar 

  • Buerge IJ, Buser H-R, Kahle M, Muller MD, Poiger T (2009) Ubiquitous occurrence of the artificial sweetener acesulfame in the aquatic environment: an ideal chemical marker of domestic wastewater in groundwater. Environ Sci Technol 43(12):4381–4385

    Google Scholar 

  • Bundschuh J, Nath B, Bhattacharya P, Liu C-W, Armienta MA, Moreno López MV, Lopez DL et al (2012) Arsenic in the human food chain: the Latin American perspective. Sci Total Environ 429:92–106

    Google Scholar 

  • Caminada D, Escher C, Fent K (2006) Cytotoxicity of pharmaceuticals found in aquatic systems: comparison of PLHC-1 and RTG-2 fish cell lines. Aquat Toxicol 79(2):114–123

    Article  CAS  Google Scholar 

  • Chan PC, Huff J (1997) Arsenic carcinogenesis in animals and in humans: mechanistic, experimental, and epidemiological evidence. J Environ Sci Health Part C 15(2):83–122

    Article  Google Scholar 

  • Choe N, Tanaka S, Kagan E (1998) Asbestos fibers and interleukin-1 upregulate the formation of reactive nitrogen species in rat pleural mesothelial cells. Am J Respir Cell Mol Biol 19(2):226–236

    Article  CAS  Google Scholar 

  • Choi M, Moon H-B, Yu J, Kim S-S, Pait AS, Choi H-G (2009) Nationwide monitoring of nonylphenolic compounds and coprostanol in sediments from Korean coastal waters. Mar Pollut Bull 58(7):1086–1092

    Article  CAS  Google Scholar 

  • Chowdhary P, NareshBharagava R, Mishra S, Khan N (2020) Role of industries in water scarcity and its adverse effects on environment and human health. In: Environmental concerns and sustainable development. Springer, Singapore, pp 235–256

    Google Scholar 

  • Clarke BO, Smith SR (2011) Review of ‘emerging’ organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids. Environ Int 37(1):226–247

    Article  CAS  Google Scholar 

  • Dagdeviren H, Robertson SA (2009) Access to water in the slums of the developing world. No. 57. Working Paper, International Policy Centre for Inclusive Growth

    Google Scholar 

  • Dekant W, Völkel W (2008) Human exposure to bisphenol A by biomonitoring: methods, results and assessment of environmental exposures. Toxicol Appl Pharmacol 228(1):114–134

    Article  CAS  Google Scholar 

  • Deshmukh AN, Wadaskar PM, Malpe DB (1995) Fluorine in environment: a review. Gondwana Geol Mag 9:1–20

    Google Scholar 

  • Drobna Z, Styblo M, Thomas DJ (2009) Purification of arsenic (+3 oxidation state) methyltransferase from rat liver cytosol. Curr Protocols Toxicol 42(1):4–34

    Google Scholar 

  • Ebert F, Weiss A, Bültemeyer, Hamann I, Hartwig A, Schwerdtle T (2011) Arsenicals affect base excision repair by several mechanisms. Mutat Res/Fundam Mol Mech Mutagen 715(1–2):32–41

    Google Scholar 

  • Edelman DA (1988) Exposure to asbestos and the risk of gastrointestinal cancer: a reassessment. Occup Environ Med 45(2):75–82

    Article  CAS  Google Scholar 

  • Edling C, Axelson O (1983) Quantitative aspects of radon daughter exposure and lung cancer in underground miners. Occup Environ Med 40(2):182–187

    Article  CAS  Google Scholar 

  • Fan Z, Wu S, Hong C, Hu J (2011) Behaviors of glucocorticoids, androgens and progestogens in a municipal sewage treatment plant: comparison to estrogens. Environ Sci Technol 45(7):2725–2733

    Article  CAS  Google Scholar 

  • Fawell J, Nieuwenhuijsen MJ (2003) Contaminants in drinking water: environmental pollution and health. Br Med Bull 68(1):199–208

    Article  CAS  Google Scholar 

  • Fiore M, Conti GO, Caltabiano R, Buffone A, Zuccarello P, Cormaci L, Cannizzaro MA, Ferrante M (2019) Role of emerging environmental risk factors in thyroid cancer: a brief review. Int J Environ Res Public Health 16(7):1185

    Google Scholar 

  • Florentin A, Hautemanière A, Hartemann P (2011) Health effects of disinfection by-products in chlorinated swimming pools. Int J Hyg Environ Health 214(6):461–469

    Article  CAS  Google Scholar 

  • Flotron V, Delteil C, Bermond A, Camel V (2003) Remediation of matrices contaminated by polycyclic aromatic hydrocarbons: use of Fenton’s reagent. Polycycl Aromat Compd 23(4):353–376

    Google Scholar 

  • Gerba CP, Pepper IL (2019) Microbial contaminants. In: Environmental and pollution science. Academic Press, pp 191–217

    Google Scholar 

  • Gerba CP, Smith JE (2005) Sources of pathogenic microorganisms and their fate during land application of wastes. J Environ Qual 34(1):42–48

    CAS  Google Scholar 

  • Gerhardsson De Verdier M, Plato N, Steineck G, Peters JM (1992) Occupational exposures and cancer of the colon and rectum. Am J Ind Med 22(3):291–303

    Article  CAS  Google Scholar 

  • Guenther K, Heinke V, Thiele B, Kleist B, Prast H, Raecker T (2002) Endocrine disrupting nonylphenols are ubiquitous in food. Environ Sci Technol 36(8):1676–1680

    Google Scholar 

  • Gutiérrez-Dabán A, Fernandez-Espinosa AJ, Ternero-Rodriguez M, Fernandez-Alvarez F (2005) Particle-size distribution of polycyclic aromatic hydrocarbons in urban air in southern Spain. Anal Bioanal Chem 381(3):721–736

    Article  Google Scholar 

  • Halden, RU (2015) Epistemology of contaminants of emerging concern and literature meta-analysis. J Hazard Mater 282:2–9

    Google Scholar 

  • Hei TK, Xu A, Huang SX, Zhao Y (2006) Mechanism of fiber carcinogenesis: from reactive radical species to silencing of the βigH3 gene. Inhal Toxicol 18(12):985–990

    Google Scholar 

  • Hernando MD, Rodríguez A, Vaquero JJ, Fernández-Alba AR, García E (2011) Environmental risk assessment of emerging pollutants in water: approaches under horizontal and vertical EU legislation. Crit Rev Environ Sci Technol 41(7):699–731

    Article  Google Scholar 

  • Howe HL, Wolfgang PE, Burnett WS, Nasca PC, Youngblood L (1989) Cancer incidence following exposure to drinking water with asbestos leachate. Public Health Rep 104(3):251

    CAS  Google Scholar 

  • Hubaux R, Becker-Santos DD, Enfield KSS, Lam S, Lam WL, Martinez VD (2012) Arsenic, asbestos and radon: emerging players in lung tumorigenesis. Environ Health 11(1):89

    Google Scholar 

  • Islam ABMR, Maity JP, Bundschuh J, Chen C-Y, Bhowmik BK, Tazaki K (2013) Arsenic mineral dissolution and possible mobilization in mineral–microbe–groundwater environment. J Hazard Mater 262:989–996

    Google Scholar 

  • Jackson BP, Taylor VF, Karagas MR, Punshon T, Cottingham KL (2012) Arsenic, organic foods, and brown rice syrup. Environ Health Perspect 120(5):623–626

    Article  CAS  Google Scholar 

  • Jenkinson DS (2001) The impact of humans on the nitrogen cycle, with focus on temperate arable agriculture. Plant Soil 228(1):3–15

    Article  CAS  Google Scholar 

  • Jury KL, Khan SJ, Vancov T, Stuetz RM, Ashbolt NJ (2011) Are sewage treatment plants promoting antibiotic resistance? Crit Rev Environ Sci Technol 41(3):243–270

    Article  Google Scholar 

  • Kakelar, HM, Barzegari A, Dehghani J, Hanifian S, Saeedi N, Barar J, Omidi Y (2019) Pathogenicity of Helicobacter pylori in cancer development and impacts of vaccination. Gastric Cancer 22(1):23–36

    Google Scholar 

  • Kim, SS, Ruiz VE, Carroll JD, Moss SF (2011) Helicobacter pylori in the pathogenesis of gastric cancer and gastric lymphoma. Cancer Lett 305(2):228–238

    Google Scholar 

  • Klaper R, Welch LC (2011) Emerging contaminant threats and the Great Lakes: existing science, estimating relative risk and determining policies. Alliance for the Great Lakes

    Google Scholar 

  • Ko S-O, Schlautman MA, Carraway ER (2000) Cyclodextrin-enhanced electrokinetic removal of phenanthrene from a model clay soil. Environ Sci Technol 34(8):1535–1541

    Article  CAS  Google Scholar 

  • Kobielska PA, Howarth AJ, Farha OK, Nayak S (2018) Metal–organic frameworks for heavy metal removal from water. Coordination Chem Rev 358:92–107

    Google Scholar 

  • Krupadam RJ, Khan MS, Wate SR (2010) Removal of probable human carcinogenic polycyclic aromatic hydrocarbons from contaminated water using molecularly imprinted polymer. Water Res 44(3):681–688

    Article  CAS  Google Scholar 

  • Kumar L (2013) A study of nitrate contamination in ground water of Delhi, India. Asian J Water Environ Pollut 10(2):91–94

    CAS  Google Scholar 

  • Kunwar SB (2019) Freshwater conservation, drinking water quality and climate change adaptation: a case study on nepal

    Google Scholar 

  • Lapworth DJ, Baran N, Stuart ME, Ward RS (2012) Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Poll 163:287–303

    Google Scholar 

  • Li, X-F, Mitch WA (2018) Drinking water disinfection byproducts (DBPs) and human health effects: multidisciplinary challenges and opportunities. 1681–1689

    Google Scholar 

  • Li J-L, Chen B-H (2002) Solubilization of model polycyclic aromatic hydrocarbons by nonionic surfactants. Chem Eng Sci 57(14):2825–2835

    Google Scholar 

  • Loos, R, Gawlik BM, Boettcher K, Locoro G, Contini S, Bidoglio G (2009). Sucralose screening in European surface waters using a solid-phase extraction-liquid chromatography–triple quadrupole mass spectrometry method. J Chromatogr A 1216(7):1126–1131

    Google Scholar 

  • Madras G, Erkey C, Akgerman A (1994) Supercritical extraction of organic contaminants from soil combined with adsorption onto activated carbon. Environ Prog 13(1):45–50

    Google Scholar 

  • Mameri N, Yeddou AR, Lounici H, Belhocine D, Grib H, Bariou B (1998) Defluoridation of septentrional Sahara water of North Africa by electrocoagulation process using bipolar aluminium electrodes. Water Res 32(5):1604–1612

    Article  CAS  Google Scholar 

  • Martin JW, Asher BJ, Beesoon S, Benskin JP, Ross Matthew S (2010) PFOS or PreFOS? Are perfluorooctanesulfonate precursors (PreFOS) important determinants of human and environmental perfluorooctanesulfonate (PFOS) exposure? J Environ Monit 12(11):1979–2004

    Article  CAS  Google Scholar 

  • Matsui J, Fujiwara K, Ugata S, Takeuchi T (2000) Solid-phase extraction with a dibutylmelamine-imprinted polymer as triazine herbicide-selective sorbent. J Chromatogr A 889(1–2):25–31

    Article  CAS  Google Scholar 

  • Mehra R, Singh S, Singh K (2006) A study of uranium, radium, radon exhalation rate and indoor radon in the environs of some areas of the Malwa region, Punjab. Indoor Built Environ 15(5):499–505

    Article  CAS  Google Scholar 

  • Melnick RL, Nyska A, Foster PM, Roycroft JH, Kissling GE (2007) Toxicity and carcinogenicity of the water disinfection byproduct, dibromoacetic acid, in rats and mice. Toxicology 230(2–3):126–136

    Article  CAS  Google Scholar 

  • Montgomery-Brown J, Reinhard M (2003) Occurrence and behavior of alkylphenolpolyethoxylates in the environment. Environ Eng Sci 20(5):471–486

    Article  CAS  Google Scholar 

  • Mossman B, Light W, Wei E (1983) Asbestos: mechanisms of toxicity and carcinogenicity in the respiratory tract. Annu Rev Pharmacol Toxicol 23(1):595–615

    Article  CAS  Google Scholar 

  • Naidu R, Andres Arias Espana V, Liu Y, Jit J (2016) Emerging contaminants in the environment: risk-based analysis for better management. Chemosphere 154:350–357

    Google Scholar 

  • Németi B, Regonesi ME, Tortora P, Gregus Z (2010) Polynucleotide phosphorylase and mitochondrial ATP synthase mediate reduction of arsenate to the more toxic arsenite by forming arsenylated analogues of ADP and ATP. Toxicol Sci 117(2):270–281

    Google Scholar 

  • Pal A, He Y, Jekel M, Reinhard M, Gin KY-H (2014) Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle. Environ Int 71:46–62

    Article  CAS  Google Scholar 

  • Panduri V, Weitzman SA, Chandel NS, Kamp DW (2004) Mitochondrial-derived free radicals mediate asbestos-induced alveolar epithelial cell apoptosis. Am J Physiol-Lung Cell Mol Physiol 286(6):L1220–L1227

    Article  CAS  Google Scholar 

  • Partridge MA, Huang SXL, Hernandez-Rosa E, Davidson MM, Hei TK (2007) Arsenic induced mitochondrial DNA damage and altered mitochondrial oxidative function: implications for genotoxic mechanisms in mammalian cells. Cancer Res 67(11):5239–5247

    Google Scholar 

  • Peto J (2001) Cancer epidemiology in the last century and the next decade. Nature 411(6835):390

    Article  CAS  Google Scholar 

  • Polissar L, Severson RK, Boatman ES (1984) A case-control study of asbestos in drinking water and cancer risk. Am J Epidemiol 119(3):456–471

    Article  CAS  Google Scholar 

  • Pournara A, Kippler M, Holmlund T, Ceder R, Grafström R, Vahter M, Broberg K, Wallberg AE (2016) Arsenic alters global histone modifications in lymphocytes in vitro and in vivo. Cell Biol Toxicol 32(4):275–284

    Article  CAS  Google Scholar 

  • Poynton HC, Vulpe CD (2009) Ecotoxicogenomics: emerging technologies for emerging contaminants 1. JAWRA J Am Water Resour Assoc 45(1):83–96

    Article  CAS  Google Scholar 

  • Prevedouros K, Brorström-Lundén E, Halsall CJ, Jones KC, Lee RGM, Sweetman AJ (2004). Seasonal and long-term trends in atmospheric PAH concentrations: evidence and implications. Environ Poll 128(1–2):17–27

    Google Scholar 

  • Richardson SD (2003) Disinfection by-products and other emerging contaminants in drinking water. TrAC Trends Anal Chem 22(10):666–684

    Article  CAS  Google Scholar 

  • Riley PA (1994) Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 65(1):27–33

    Article  CAS  Google Scholar 

  • Rossman Toby G (2003) Mechanism of arsenic carcinogenesis: an integrated approach. Mutat Res/Fundam Mol Mech Mutagen 533(1–2):37–65

    Article  CAS  Google Scholar 

  • Rossman TG, Klein CB (2011) Genetic and epigenetic effects of environmental arsenicals. Metallomics 3(11):1135–1141

    Article  CAS  Google Scholar 

  • Ruiz-Ramos R, Lopez-Carrillo L, Rios-Perez AD, De Vizcaya-Ruíz A, Cebrian ME (2009) Sodium arsenite induces ROS generation, DNA oxidative damage, HO-1 and c-Myc proteins, NF-κB activation and cell proliferation in human breast cancer MCF-7 cells. Mutat Res/Genet Toxicol Environ Mutagen 674(1–2):109–115

    Google Scholar 

  • Samet JM (1989) Radon and lung cancer. JNCI: J Natl Cancer Inst 81(10):745–758

    Google Scholar 

  • Samet JM, Eradze GR (2000) Radon and lung cancer risk: taking stock at the millenium. Environ Health Perspect 108(suppl 4):635–641

    Article  CAS  Google Scholar 

  • Samet JM, Avila-Tang E, Boffetta P, Hannan LM, Olivo-Marston S, Thun MJ, Rudin CM (2009) Lung cancer in never smokers: clinical epidemiology and environmental risk factors. Clin Cancer Res 15(18):5626–5645

    Article  Google Scholar 

  • Scheurer M, Brauch H-J, Lange FT (2009). Analysis and occurrence of seven artificial sweeteners in German waste water and surface water and in soil aquifer treatment (SAT). Anal Bioanal Chem 394(6):1585–1594

    Google Scholar 

  • Sharma AK, ChrTjell J, Sloth JJ, Holm PE (2014) Review of arsenic contamination, exposure through water and food and low cost mitigation options for rural areas. Appl Geochem 41:11–33

    Article  CAS  Google Scholar 

  • Shuko CM (1986) Radon gas: contractor liability for an indoor health hazard. Am JL Med 12:241

    Google Scholar 

  • Siddique S, Kubwabo C, Harris SA (2016) A review of the role of emerging environmental contaminants in the development of breast cancer in women. Emerging Contaminants 2(4):204–219

    Google Scholar 

  • Silvia Dı́az-Cruz M, López de Alda MJ, Barcelo D (2003) Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. TrAC Trends Anal Chem 22(6):340–351

    Google Scholar 

  • Simpson KL, Hayes KP (1998) Drinking water disinfection by-products: an Australian perspective. Water Res 32(5):1522–1528

    Article  CAS  Google Scholar 

  • Singh A, Patel AK, Deka JP, Das A, Kumar A, Kumar M (2019) Prediction of arsenic vulnerable zones in groundwater environment of rapidly urbanizing setup, Guwahati, India. Geochemistry 125590. https://doi.org/10.1016/j.chemer.2019.125590

  • Singh A., A.K. Patel, and Manish Kumar* (2020). “Mitigating the risk of Arsenic and Fluoride contamination of groundwater through a Multi-Model framework of statistical assessment and natural remediation techniques”, In Manish Kumar, Daniel Snow, and Ryo Honda Editors: Emerging Issues in the Water Environment during Anthropocene: A South East Asian Perspective (ISBN 978–93-81891-41-4), Publisher Springer Nature

    Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568

    Article  CAS  Google Scholar 

  • Srivastava RK, Lohani M, Bhushan Pant A, Rahman Q (2010) Cyto-genotoxicity of amphibole asbestos fibers in cultured human lung epithelial cell line: role of surface iron. Toxicol Ind Health 26(9):575–582

    Google Scholar 

  • Stuart Marianne, Lapworth Dan, Crane Emily, Hart Alwyn (2012) Review of risk from potential emerging contaminants in UK groundwater. Sci Total Environ 416:1–21

    Article  CAS  Google Scholar 

  • Thomaidis NS, Asimakopoulos AG, Bletsou AA (2012) Emerging contaminants: a tutorial mini-review. Global NEST J 14(1):72–79

    Google Scholar 

  • Toft P, Meek ME, Wigle DT, Meranger JC, Miller AB (1984) Asbestos in drinking water. Crit Rev Environ Control 14(2):151–197

    Google Scholar 

  • Totsche, Kai Uwe, Wolfgang Wilcke, Markus Körber, JozefKobza, and Wolfgang Zech (2000) Evaluation of fluoride-induced metal mobilization in soil columns. J Environ Qual 29(2):454–459

    Google Scholar 

  • Tsuji JS, Chang ET, Gentry PR, Clewell HJ, Boffetta P, Cohen SM (2019) Dose-response for assessing the cancer risk of inorganic arsenic in drinking water: the scientific basis for use of a threshold approach. Crit Rev Toxicol 49(1):36–84

    Google Scholar 

  • Turner Andrew (2019) Trace elements in laundry dryer lint: a proxy for household contamination and discharges to waste water. Sci Total Environ 665:568–573

    Article  CAS  Google Scholar 

  • Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV (2007) Human exposure to bisphenol A (BPA). Reprod Toxicol 24(2):139–177

    Article  CAS  Google Scholar 

  • White R, Jobling S, Hoare SA, Sumpter JP, Parker MG (1994) Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology 135(1):175–182

    Google Scholar 

  • Williams CKO (2019). Risk factors for cancer. In: Cancer and AIDS, pp. 115–178. Springer, Cham

    Google Scholar 

  • Xu A, Huang X, Lien Y-C, Bao L, Yu Z, Hei TK (2007) Genotoxic mechanisms of asbestos fibers: role of extranuclear targets. Chem Res Toxicol 20(5):724–733

    Google Scholar 

  • Ying G-G (2006) Fate, behavior and effects of surfactants and their degradation products in the environment. Environ Int 32(3):417–431

    Article  CAS  Google Scholar 

  • Zheng X-J, Blais J-F, Mercier G, Bergeron M, Drogui P (2007) PAH removal from spiked municipal wastewater sewage sludge using biological, chemical and electrochemical treatments. Chemosphere 68(6):1143–1152

    Article  CAS  Google Scholar 

  • Zhou H, Randers-Pehrson G, Waldren CA, Vannais D, Hall EJ, Hei TK (2000) Induction of a bystander mutagenic effect of alpha particles in mammalian cells. Proc Natl Acad Sci 97(5):2099–2104

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rojalin Sahu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahoo, T. et al. (2021). Carcinogenic Nature of Emerging Contaminants: Havoc for Present and Gateway of Unhealthy Future. In: Kumar, M., Snow, D., Honda, R., Mukherjee, S. (eds) Contaminants in Drinking and Wastewater Sources. Springer Transactions in Civil and Environmental Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4599-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4599-3_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4598-6

  • Online ISBN: 978-981-15-4599-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics