Skip to main content

Impact and Fate of Microplastics in the Riverine Ecosystem

  • Chapter
  • First Online:
Contaminants in Drinking and Wastewater Sources

Abstract

In the recent decade, there is a global concern regarding the abundance of microplastics (MPs) and their ill effects in natural ecosystems. Due to their ill effects towards aquatic biota and possible hazards to human health, MPs are included in the class of ‘contaminant of emerging concern’. Besides marine waters, they are currently being assessed in inland waters including rivers which are being considered as the single most important source of MPs in the marine environment. This chapter tries to emphasise various processes through which MPs enter into the river ecosystems and the fate of the plastic particles thereafter. Moreover, the ecotoxic effect of MPs towards the aquatic biota, their detection techniques and possible risk management has also been discussed. The transport and fate analysis of the plastic particles through river is of highly important in the present day context to establish their abundance and to develop possible mitigation strategies to reduce human health hazard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62(8):1596–1605

    Article  CAS  Google Scholar 

  • Ani E-C, Wallis S, Kraslawski A, Agachi PS (2009) Development, calibration and evaluation of two mathematical models for pollutant transport in a small river. Environ Model Softw 24:1139–1152

    Article  Google Scholar 

  • Avio CG, Gorbi S, Milan M, Benedetti M, Fattorini D, D’Errico G, Pauletto M, Bargelloni L, Regoli F (2015) Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environ Pollut 198:211–222

    Article  CAS  Google Scholar 

  • Bao LJ, Xu SP, Liang Y, Zeng EY (2012) Development of a low-density polyethylene-containing passive sampler for measuring dissolved hydrophobic organic compounds in open waters. Environ Toxicol Chem 31(5):1012–1018

    Article  CAS  Google Scholar 

  • Bern L (1990) Size-related discrimination of nutritive and inert particles by freshwater zooplankton. J Plankton Res 12(5):1059–1067

    Article  Google Scholar 

  • Besseling E, Wegner A, Foekema EM, van den Heuvel-Greve MJ, Koelmans A (2013) Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.) Environ. Sci Technol 47:593–600

    Article  CAS  Google Scholar 

  • Besseling E, Wang B, LĂ¼rling M, Koelmans AA (2014) Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environ Sci Technol 48:12336–12343

    Article  CAS  Google Scholar 

  • Brandl F, Bertrand N, Lima EM, Langer R (2015) Nanoparticles with photo induced precipitation for the extraction of pollutants from water and soil. Nat Commun 6:7765

    Article  CAS  Google Scholar 

  • Brennecke D, Duarte B, Paiva F, Caçador I, Canning-Clode J (2016) Microplastics as vector for heavy metal contamination from the marine environment. Estuar Coast Shelf Sci 178:189–195

    Article  CAS  Google Scholar 

  • Brown PP, Lawler DF (2003) Sphere drag and settling velocity revisited. J Environ Eng 129:222–231

    Article  CAS  Google Scholar 

  • Browne MA, Dissanayake A, Galloway TS, Lowe DM, Thompson RC (2008) Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.) Environ. Sci Technol 42:5026–5031

    Article  CAS  Google Scholar 

  • Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, Thompson R (2011) Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol 45(21):9175–9179

    Article  CAS  Google Scholar 

  • Canesi L, Ciacci C, Bergami E, Monopoli MP, Dawson KA, Papa S, Canonico B, Corsi I (2015) Evidence for immunomodulation and apoptotic processes induced by cationic polystyrene nanoparticles in the hemocytes of the marine bivalve Mytilus. Mar Environ Res 111:1–7

    Article  Google Scholar 

  • Carpenter E, Anderson SJ, Miklas HP, Peck BB, Harvey GR (1972) Polystyrene spherules in coastal waters. Science 178(4062):749

    Article  CAS  Google Scholar 

  • Cedervall T, Hansson LA, Lard M, Frohm B, Linse S (2012) Food chain transport of nanoparticles affects behaviour and fat metabolism in fish. PLoS ONE 7:e32254

    Article  CAS  Google Scholar 

  • Cole M, Galloway TS (2015) Ingestion of nanoplastics and microplastics by Pacific oyster larvae. Environ Sci Technol 49:14625–14632

    Article  CAS  Google Scholar 

  • Cole M, Lindeque P, Halsband C, Galloway TS (2011) Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62(12):2588–2597

    Article  CAS  Google Scholar 

  • Cole M, Lindeque P, Fileman E, Halsband C, Galloway TS (2015) The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanushelgolandicus. Environ Sci Technol 49:1130–1137

    Article  CAS  Google Scholar 

  • Colton JB, Knapp FD, Burns BR (1974) Plastic particles in surface waters of Northwestern Atlantic. Science 185(4150):491–497

    Article  Google Scholar 

  • de SĂ¡ LC, Luıś LG, Guilhermino L (2015) Effects of microplastics on juveniles of the common goby (Pomatoschistusmicrops): confusion with prey, reduction of the predatory performance and efficiency, and possible influence of developmental conditions. Environ Pollut 196:359–362

    Google Scholar 

  • Deka JP, Baruah B, Singh S, Chaudhury R, Prakash A, Bhattacharyy P, Selvan MT, Kumar M (2015) Tracing phosphorous distributions in the surficial sediments of two eastern Himalayan high-altitude lakes through sequential extraction, multivariate and HYSPLIT back trajectory analyses. Environ Earth Sci 73:7617–7629

    Article  CAS  Google Scholar 

  • Della Torre C, Bergami E, Salvati A, Faleri C, Cirino P, Dawson KA, Corsi I (2014) Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus. Environ Sci Technol 48:12302–12311

    Article  CAS  Google Scholar 

  • Elimelech M, Gregory J, Jia X (2013) Modelling of aggregation processes, In Particle deposition and aggregation: measurement, modelling and simulation. Butterworth-Heinemann

    Google Scholar 

  • Eubeler JP, Zok S, Bernhard M, Knepper TP (2009) Environmental biodegradation of synthetic polymers I. Test methodologies and procedures. TrAC Trends Anal Chem 28(9):1057–1072

    Google Scholar 

  • Farrell P, Nelson K (2013) Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinusmaenas (L.) Environ. Pollution 177:1–3

    Article  CAS  Google Scholar 

  • FDA (2017) The microbead-free waters act: FAQs. https://www.fda.gov/cosmetics/cosmetics-laws-regulations/microbead-free-waters-act-faqs

  • GESAMP (2015) Sources, fate and effects of microplastics in the marine environment: a global assessment. Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection Reports and studies, 90

    Google Scholar 

  • Gewert B, Plassmann MM, MacLeod M (2015) Pathways for degradation of plastic polymers floating in the marine environment. Environ Sci-Proc Imp 17(9):1513–1521

    CAS  Google Scholar 

  • Gouin T, Avalos J, Brunning I, Brzuska K, de Graaf J, Kaumanns J, Koning T, Meyberg M, Rettinger K, Schlatter H, Thomas J, Van Welie R, Wolf T (2015) Use of micro-plastic beads in cosmetic products in Europe and their estimated emissions to the North Sea environment. SOFW 3:40–46

    Google Scholar 

  • Green DS, Boots B, Sigwart J, Jiang S, Rocha C (2016) Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling. Environ Pollut 208:426–434

    Article  CAS  Google Scholar 

  • Gregory MR (1977) Plastic pellets on New-Zealand beaches. Mar Pollut Bull 8(4):82–84

    Article  Google Scholar 

  • Greven AC, Merk T, Karag€oz F, Mohr K, Klapper M, Jovanović B, Palić D (2016) Polycarbonate and polystyrene nanoplastic particles act as stressors to the innate immune system of fathead minnow (Pimephalespromelas). Environ Toxicol Chem 35:3093–3100

    Google Scholar 

  • Grima S, Bellon-Maurel V, Feuilloley P, Silvestre F (2000) Aerobic biodegradation of polymers in solid-state conditions: a review of environmental and physicochemical parameter settings in laboratory simulations. J Polym Environ 8(4):183–195

    Article  CAS  Google Scholar 

  • GUV.UK (2018) World leading microbeads ban comes into force. https://www.gov.uk/government/news/world-leading-microbeads-ban-comes-into-force

  • Harrison JP, Ojeda JJ, Romero-GonzĂ¡lez ME (2012) The applicability of reflectance micro- Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments. Sci Total Environ 416:455–463

    Article  CAS  Google Scholar 

  • Horton AA, Svendsen C, Williams RJ, Spurgeon DJ, Lahive E (2017) Large microplastic particles in sediments of tributaries of the River Thames, UK–Abundance, sources and methods for effective quantification. Mar Pollut Bull 114(1):218–226

    Article  CAS  Google Scholar 

  • Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Plastic waste inputs from land into the ocean. Science 347(6223):768–771

    Article  CAS  Google Scholar 

  • Ji Z-G (2008) Hydrodynamics and water quality: modeling rivers, lakes, and estuaries. Wiley, Hoboken

    Book  Google Scholar 

  • Johnson CP, Li X, Logan BE (1996) Settling velocities of fractal aggregates. Environ Sci Technol 30:1911–1918

    Article  CAS  Google Scholar 

  • Karami A, Romano N, Galloway T, Hamzah H (2016) Virgin microplastics cause toxicity and modulate the impacts of phenanthrene on biomarker responses in African catfish (Clariasgariepinus). Environ Res 151:58–70

    Article  CAS  Google Scholar 

  • Kashiwada S (2006) Distribution of nanoparticles in the see-through medaka (Oryziaslatipes). Environ Health Perspect 114:1697–1702

    Article  CAS  Google Scholar 

  • Khatmullina L, Isachenko I (2016) Settling velocity of microplastic particles of regular shapes. Mar Pollut Bull 114(2):871–880

    Article  Google Scholar 

  • Klein S, Worch E, Knepper TP (2015) Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-Main area in Germany. Environ Sci Technol 49(10):6070–6076

    Article  CAS  Google Scholar 

  • Kowalski N, Reichardt AM, Waniek JJ (2016) Sinking rates of microplastics and potential implications of their alteration by physical, biological, and chemical factors. Mar Pollut Bull 109(1):310–319

    Article  CAS  Google Scholar 

  • Kumar M (2016) Understanding the remobilization of copper, zinc, cadmium and lead due to ageing through sequential extraction and isotopic exchangeability. Environ Monit Assessment 188:381. https://doi.org/10.1007/s10661-016-5379-z

  • Kumar M, Snow D, Li Y, Shea P (2019) Perchlorate behavior in the context of black carbon and metal cogeneration following fireworks emission at Oak Lake, Lincoln, Nebraska, USA. Environ Pollut 253:930–938

    Article  CAS  Google Scholar 

  • Lambert S, Wagner M (2018) Microplastics are contaminants of emerging concern in freshwater environments: an overview. In: Freshwater microplastics. Springer, Cham, pp 1–23

    Google Scholar 

  • Lambert S, Sinclair CJ, Boxall ABA (2014) Occurrence, degradation and effects of polymer based materials in the environment. Rev Environ Contam Toxicol 227:1–53

    CAS  Google Scholar 

  • Lassen C, Hansen SF, Magnusson K, NorĂ©n F, Hartmann NB, Jensen PR, Nielsen TG, Brinch A (2015) Microplastics: occurrence, effects and sources of releases to the environment in Denmark, Danish Environmental Protection Agency, Copenhagen K, Environmental project no. 1793

    Google Scholar 

  • Lebreton LC, Van der Zwet J, Damsteeg JW, Slat B, Andrady A, Reisser J (2017) River plastic emissions to the world’s oceans. Nat Comm 8:15611

    Article  CAS  Google Scholar 

  • Lee DG, Bonner JS, Garton LS et al (2000) Modeling coagulation kinetics incorporating fractal theories: a fractal rectilinear approach. Water Res 34:1987–2000

    Article  CAS  Google Scholar 

  • Lee KW, Shim WJ, Kwon OY, Kang JH (2013) Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopusjaponicus. Environ Sci Technol 47:11278–11283

    Article  CAS  Google Scholar 

  • Lithner D, Damberg J, Dave G, Larsson A (2009) Leachates from plastic consumer products—screening for toxicity with Daphnia magna. Chemosphere 74(9):1195–1200

    Article  CAS  Google Scholar 

  • Lithner D, Nordensvan I, Dave G (2012) Comparative acute toxicity of leachates from plastic products made of polypropylene, polyethylene, PVC, acrylonitrile-butadiene-styrene, and epoxy to Daphnia magna. Environ Sci Pollut Res 19(5):1763–1772

    Article  CAS  Google Scholar 

  • Löder MGJ, Gerdts G (2015) Methodology used for the detection and identification of microplastics—a critical appraisal. In: Bergmann M, Gutow L, Klages M (eds) Marine anthropogenic litter. Springer, Cham, pp 201–227

    Chapter  Google Scholar 

  • Löder MGJ, Kuczera M, Mintenig S, Lorenz C, Gerdts G (2015) Focal plane array detector based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples. Environ Chem 12:563

    Article  Google Scholar 

  • Lönnstedt OM, Eklov P (2016) Environmentally relevant concentrations of microplastic particles influence larval fish ecology. Science 352:1213–1216

    Article  Google Scholar 

  • Lu Y, Zhang Y, Deng Y, Jiang W, Zhao Y, Geng J, Ding L, Ren H (2016) Uptake and Accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environ Sci Technol 50:4054–4060

    Article  CAS  Google Scholar 

  • Mahmood K (1987) Reservoir sedimentation: impact, extent, and mitigation. Technical paper

    Google Scholar 

  • Mazurais D, Ernande B, Quazuguel P, Severe A, Huelvan C, Madec L, Mouchel O, Soudant P, Robbens J, Huvet A, Zambonino-Infante J (2015) Evaluation of the impact of polyethylene microbeads ingestion in European sea bass (Dicentrarchuslabrax) larvae. Mar Environ Res 112:78–85

    Article  CAS  Google Scholar 

  • McNown JS, Malaika J (1950) Effects of particle shape on settling velocity at low Reynolds numbers. EOS Trans Am Geophys Union 31:74–82

    Article  Google Scholar 

  • Mukherjee S, Patel AK, Manish Kumar (2020) Water scarcity and land degradation nexus in the era of anthropocene: some reformations to encounter the environmental challenges for advanced water management systems meeting the sustainable development. In: Manish Kumar, Snow D, Honda R (eds) Emerging issues in the water environment during anthropocene: a south east Asian perspective. Publisher Springer Nature. ISBN 978-93-81891-41-4

    Google Scholar 

  • Muncke J (2009) Exposure to endocrine disrupting compounds via the food chain: is packaging a relevant source? Sci Total Environ 407(16):4549–4559

    Article  CAS  Google Scholar 

  • Napper IE, Thompson RC (2016) Release of synthetic microplastic plastic fibres from domestic washing machines: effects of fabric type and washing conditions. Mar Pollut Bull 112(1–2):39–45

    Article  CAS  Google Scholar 

  • Nobre CR, Santana MFM, Maluf A, Cortez FS, Cesar A, Pereira CDS, Turra A (2015) Assessment of microplastic toxicity to embryonic development of the sea urchin Lytechinusvariegatus (Echinodermata: Echinoidea). Mar Pollut Bull 92(1–2):99–104

    Article  CAS  Google Scholar 

  • O’Connor IA, Golsteijn L, Hendriks AJ (2016) Review of the partitioning of chemicals into different plastics: consequences for the risk assessment of marine plastic debris. Mar Pollut Bull 113(1–2):17–24

    Article  Google Scholar 

  • Oehlmann J, Schulte-Oehlmann U, Kloas W, Jagnytsch O, Lutz I, Kusk KO, Wollenberger L, Santos EM, Paull GC, Van Look KJ, Tyler CR (2009) A critical analysis of the biological impacts of plasticizers on wildlife. Philos Trans R Soc Lond B Biol Sci 364(1526):2047–2062

    Google Scholar 

  • Ogonowski M, SchĂ¼r C, JarsĂ©n Ă…, Gorokhova E (2016) The effects of natural and anthropogenic microparticles on individual fitness in Daphnia magna. PLoS ONE 11:e0155063

    Article  Google Scholar 

  • Patel AK, Das N, Goswami R, Manish Kumar (2019a) Arsenic mobility and potential co-leaching of fluoride from the sediments of three tributaries of the Upper Brahmaputra floodplain, Lakhimpur, Assam, India. J Geochem Exploration 203:45–58

    Article  CAS  Google Scholar 

  • Patel AK, Das N, Manish Kumar (2019b) Multilayer arsenic mobilization and multimetal co-enrichment in the alluvium (Brahmaputra) plains of India: a tale of redox domination along the depth. Chemosphere 224:140–150

    Article  CAS  Google Scholar 

  • Paul-Pont I, Lacroix C, GonzĂ¡lezFernĂ¡ndez C, HĂ©garet H, Lambert C, Le GoĂ¯c N, FrĂ©re L, Cassone AL, Sussarellu R, Fabioux C, Guyomarch J, Albentosa M, Huvet A, Soudant P (2016). Exposure of marine mussels Mytilusspp. to polystyrene microplastics: toxicity and influence on fluoranthene bioaccumulation. Environ Pollut 216:724–737

    Google Scholar 

  • Peda C, Caccamo L, Fossi MC, Gai F, Andaloro F, Genovese L, Perdichizzi A, Romeo T, Maricchiolo G (2016) Intestinal alterations in European sea bass Dicentrarchuslabrax (Linnaeus, 1758) exposed to microplastics: preliminary results. Environ Pollut 212:251–256

    Article  CAS  Google Scholar 

  • PlasticsEurope (2019) Plastics-the facts 2019: an analysis of European plastics production, demand and waste data. http://www.plasticseurope.org

  • Praetorius A, Scheringer M, HungerbĂ¼hler K (2012) Development of environmental fate models for engineered nanoparticles—a case study of TiO2 nanoparticles in the Rhine river. Environ Sci Technol 46:6705–6713

    Article  CAS  Google Scholar 

  • Qi Y, Yang X, Pelaez AM, Lwanga EH, Beriot N, Gertsen H, Garbeva P, Geissen V (2018) Macro-and micro-plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticumaestivum) growth. Sci Total Environ 645:1048–1056

    Article  CAS  Google Scholar 

  • Quik JTK, Velzeboer I, Wouterse M et al (2014) Heteroaggregation and sedimentation rates for nanomaterials in natural waters. Water Res 48:269–279

    Article  CAS  Google Scholar 

  • Raghavan D, Torma AE (1992) DSC and FTIR characterization of biodegradation of polyethylene. Polym Engine Sci 32(6):438–442

    Article  CAS  Google Scholar 

  • Reddy MM, Deighton M, Gupta RK, Bhattacharya SN, Parthasarathy R (2009) Biodegradation of oxo-biodegradable polyethylene. J Appl Polym Sci 111(3):1426–1432

    Article  CAS  Google Scholar 

  • Rehse S, Kloas W, Zarfl C (2016) Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna. Chemosphere 153:91–99

    Article  CAS  Google Scholar 

  • Rist SE, Hartmann NB (2017) Aquatic ecotoxicity of microplastics and nanoplastics—lessons learned from engineered nanomaterials. In: Wagner M, Lambert S (eds) Freshwater microplastics: emerging environmental contaminants? Springer, Heidelberg

    Google Scholar 

  • Rist S, Hartmann NB (2018) Aquatic ecotoxicity of microplastics and nanoplastics: lessons learned from engineered nanomaterials. In: Wagner M, Lambert S, Lambert MW (eds) Freshwater microplastics. Springer International Publishing, Cham, pp 25–49

    Google Scholar 

  • Rist SE, Assidqi K, Zamani NP, Appel D, Perschke M, Huhn M, Lenz M (2016) Suspended micro-sized PVC particles impair the performance and decrease survival in the Asian green mussel Pernaviridis. Mar Pollut Bull 111:213–220

    Article  CAS  Google Scholar 

  • Rochman CM (2015) The complex mixture, fate and toxicity of chemicals associated with plastic debris in the marine environment. In: Bergmann M, Gutow L, Klages M (eds) Marine anthropogenic litter. Springer, Cham, pp 117–140

    Google Scholar 

  • Rosenkranz P, Chaudhry Q, Stone V, Fernandes TF (2009) A comparison of nanoparticle and fine particle uptake by Daphnia magna. Environ Toxicol Chem 28(10):2142–2149

    Article  CAS  Google Scholar 

  • Sarkar DJ, Barman M, Bera T, De M, Chatterjee D (2018) Agriculture: polymers in crop production mulch and fertilizer. In: Mishra M (ed) Encyclopedia of polymer applications. CRC Press

    Google Scholar 

  • Sarkar DJ, Sarkar SD, Das BK, Manna RK, Behera BK, Samanta S (2019) Spatial distribution of meso and microplastics in the sediments of river Ganga at eastern India. Sci Total Environ 694:133712

    Article  CAS  Google Scholar 

  • Scarascia-Mugnozza G, Schettini E, Vox G, Malinconico M, Immirzi B, Pagliara S (2006) Mechanical properties decay and morphological behaviour of biodegradable films for agricultural mulching in real scale experiment. Polym Degrad Stabil 91(11):2801–2808

    Article  CAS  Google Scholar 

  • Singh A, Patel AK, Deka JP, Das A, Kumar A, Manish Kumar (2019) Prediction of Arsenic vulnerable zones in groundwater environment of rapidly urbanizing setup, Guwahati, India. Geochemistry 125590. https://doi.org/10.1016/j.chemer.2019.125590

  • Singh A, Patel AK, Manish Kumar (2020) Mitigating the risk of Arsenic and Fluoride contamination of groundwater through a Multi-Model framework of statistical assessment and natural remediation techniques. In: Manish Kumar, Snow D, Honda R (eds) Emerging issues in the water environment during anthropocene: a south east Asian perspective. Publisher Springer Nature. ISBN 978-93-81891-41-4

    Google Scholar 

  • Song YK, Hong SH, Jang M, Han GM, Rani M, Lee J, Shim WJ (2015) A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples. Mar Pollut Bull 93:202–209

    Article  CAS  Google Scholar 

  • Steinmetz Z, Wollmann C, Schaefer M, Buchmann C, David J, Tröger J, Muñoz K, Froer O, Schaumann GE (2016) Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci Total Environ 550:690–705

    Article  CAS  Google Scholar 

  • Sussarellu R, Suquet M, Thomas Y, Lambert C, Fabioux C, Pernet MEJ, Le GoĂ¯c N, Quillien V, Mingant C, Epelboin Y, Corporeau C, Guyomarch J, Robbens J, Paul-Pont I, Soudant P, Huvet A (2016) Oyster reproduction is affected by exposure to polystyrene microplastics. Proc Natl Acad Sci 113:2430–2435

    Article  CAS  Google Scholar 

  • Tagg AS, Sapp M, Harrison JP, Ojeda JJ (2015) Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging. Anal Chem 87:6032–6040

    Article  CAS  Google Scholar 

  • Tanaka K, Takada H (2016) Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters. Sci Rep 6:34351

    Article  CAS  Google Scholar 

  • Tata Strategic (2014) Potential of plastics industry in Northern India with special focus on plasticulture and food processing-2014. A report on plastics industry. Federation of Indian Chambers of Commerce and Industry. New Delhi

    Google Scholar 

  • Teuten EL, Rowland SJ, Galloway TS, Thompson RC (2007) Potential for plastics to transport hydrophobic contaminants. Environ Sci Technol 41:7759–7764

    Article  CAS  Google Scholar 

  • UNEP (2018) Single-use plastics: a roadmap for sustainability. https://wedocs.unep.org/handle/20.500.11822/25496

  • van Wezel A, Caris I, Kools SA (2016) Release of primary microplastics from consumer products to wastewater in The Netherlands. Environ Toxicol Chem 35(7):1627–1631

    Article  Google Scholar 

  • Venkatachalam S, Nayak SG, Labde JV, Gharal PR, Rao K, Kelkar AK (2012) In: Saleh HED (ed) Polyester, InTech

    Google Scholar 

  • von Moos N, Burkhardt-Holm P, K€ohler A (2012) Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ Sci Technol 46:11327–11335

    Article  Google Scholar 

  • Wagner M, Scherer C, Alvarez-MÅ©noz D, Brennholt N, Bourrain X, Buchinger S, Fries E, Grosbois C, Klasmeier J, Marti T, Rodriguez-Mozaz S, Urbatzka R, Vethaak A, Winther-Neilson M, Reifferscheid G (2014) Microplastics in freshwater ecosystems: what we know and what we need to know. Environ Sci Eu 26(1):12

    Article  Google Scholar 

  • Wallis S (2007) The numerical solution of the advection-dispersion equation: a review of some basic principles. Acta Geophys 55:85–94

    Article  Google Scholar 

  • Wang J, Peng J, Tan Z, Gao Y, Zhan Z, Chen Q, Cai L (2017) Microplastics in the surface sediments from the Beijiang River littoral zone: composition, abundance, surface textures and interaction with heavy metals. Chemosphere 171:248–258

    Article  CAS  Google Scholar 

  • Waters CN, Zalasiewicz J, Summerhayes C, Barnosky AD, Poirier C, Galuszka A, Cearreta A, Edgeworth M, Ellis EC, Ellis M, Jeandel C, Leinfelder R, McNeill JR, Richter D, Steffen W, Syvitski J, Vidas D, Wagreich M, Williams M, Zhisheng A, Grinevald J, Odada E, Oreskes N, Wolfe AP (2016) The anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351(6269):aad2622

    Google Scholar 

  • Watts AJR, Urbina MA, Goodhead R, Moger J, Lewis C, Galloway TS (2016) Effect of microplastic on the gills of the shore crab Carcinusmaenas. Environ Sci Technol 50:5364–5369

    Article  CAS  Google Scholar 

  • Wegner A, Besseling E, Foekema EM, Kamermans P, Koelmans AA (2012) Effects of nanopolystyrene on the feeding behavior of the blue mussel (Mytilus edulis L.) Environ. Toxicol Chem 31:2490–2497

    Article  CAS  Google Scholar 

  • Weinstein JE, Crocker BK, Gray AD (2016) Frommacroplastic to microplastic: degradation of high-density polyethylene, polypropylene, and polystyrene in a salt marsh habitat. Environ Toxicol Chem 35(7):1632–1640

    Article  CAS  Google Scholar 

  • Wright SL, Rowe D, Thompson RC, Galloway TS (2013a) Microplastic ingestion decreases energy reserves in marine worms. Curr Biol 23:R1031–R1033

    Article  CAS  Google Scholar 

  • Wright SL, Thompson RC, Galloway TS (2013b) The physical impacts of microplastics on marine organisms: a review. Environ Pollut 178:483–492

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhruba Jyoti Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarkar, D.J., Das Sarkar, S., Mukherjee, S., Das, B.K. (2021). Impact and Fate of Microplastics in the Riverine Ecosystem. In: Kumar, M., Snow, D., Honda, R., Mukherjee, S. (eds) Contaminants in Drinking and Wastewater Sources. Springer Transactions in Civil and Environmental Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4599-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4599-3_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4598-6

  • Online ISBN: 978-981-15-4599-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics